Publications by authors named "Lianqi Shao"

Pancreatic β-cell apoptosis plays a crucial role in the development of type 2 diabetes. Cytochrome c oxidase subunit 6A2 (COX6A2) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells, however, whether they are involved in β-cell apoptosis is unclear. Here, we sought to investigate the role of FXR-regulated COX6A2 in diabetic β-cell apoptosis.

View Article and Find Full Text PDF

Roux-en-Y gastric bypass (RYGB) has been shown to inhibit β-cell apoptosis, but the underlying mechanisms are not yet fully understood. Cytochrome c oxidase subunit 6A2 (COX6A2) is expressed in β-cells. Here, we sought to investigate the role of COX6A2 in β-cell apoptosis, especially following RYGB.

View Article and Find Full Text PDF

The blood-tumor barrier (BTB) contributes to poor therapeutic efficacy by limiting drug uptake; therefore, elevating BTB permeability is essential for glioma treatment. Here, we prepared astrocyte microvascular endothelial cells (ECs) and glioma microvascular ECs (GECs) as in vitro blood-brain barrier (BBB) and BTB models. Upregulation of METTL3 and IGF2BP3 in GECs increased the stability of CPEB2 mRNA through its m6A methylation.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a brain function change caused by external forces, which is one of the main causes of death and disability worldwide. The aim of this study was to identify early diagnostic markers and potential therapeutic targets for TBI. Differences between TBI and controls in GSE89866 and GSE104687 were analyzed.

View Article and Find Full Text PDF

Studies have found that RNA-binding proteins (RBPs) are dysfunctional and play a significant regulatory role in the development of glioma. Based on The Cancer Genome Atlas database and the previous studies, we selected heterogeneous nuclear ribonucleoprotein (HNRNPD) as the research candidate and sought its downstream targeted genes. In the present study, HNRNPD, linc00707, and specific protein 2 (SP2) were highly expressed, while zinc fingers and homeboxes 2 (ZHX2) and miR-651-3p were remarkedly downregulated in glioma tissues and cells.

View Article and Find Full Text PDF

Glioma is the most common form of primary central nervous malignant tumors. Vasculogenic mimicry (VM) is a blood supply channel that is different from endothelial blood vessels in glioma. VM is related to tumor invasion and metastasis.

View Article and Find Full Text PDF

Glioma, a common malignant tumour of the human central nervous system, has poor prognosis and limited treatment options. Dissecting the biological mechanisms underlying glioma pathogenesis can facilitate the development of better therapies. Here, we investigated the endogenous expression of BTB and CNC homolog 2 (BACH2), fused in sarcoma (FUS), TSLNC8 and microRNA (miR)-10b-5p in glioma cells and tissues.

View Article and Find Full Text PDF

Molecular-targeted therapy plays an important role in the combined treatment of breast cancer. Long noncoding RNA (LncRNA) plays a significant role in regulating breast cancer progression. The present study is to reveal the potential roles and molecular mechanism that the secretory carrier-associated membrane protein 1-transcript variant 2 (SCAMP1-TV2) has in breast.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are significantly dysregulated in glioma. In this study, we demonstrated the upregulation of Nuclear cap-binding subunit 3 (NCBP3) in glioma tissues and cells. Further, knockdown of NCBP3 inhibited the malignant progression of glioma.

View Article and Find Full Text PDF

Background: Angiogenesis plays an important role in the progress of glioma. RNA-binding proteins (RBPs) and circular RNAs (circRNAs), dysregulated in various tumors, have been verified to mediate diverse biological behaviors including angiogenesis.

Methods: Quantitative real-time PCR (qRT-PCR) and western blot were performed to detect the expression of SRSF10, circ-ATXN1, miR-526b-3p, and MMP2/VEGFA.

View Article and Find Full Text PDF

Warburg effect is a hallmark of cancer cells, wherein glycolysis is preferred over oxidative phosphorylation even in aerobic conditions. Reprogramming of glycometabolism is especially crucial for malignancy in glioma. RNA-binding proteins and long noncoding RNAs are important for aerobic glycolysis during malignant transformation.

View Article and Find Full Text PDF

Glioma is the most common primary malignancy in the brain, and vasculogenic mimicry (VM) is one of the blood supply methods. Here we investigated the possibility that lncRNAs regulate the stability of transcription factors through the SMD pathway, which affects proliferation, migration, invasion, and the ability to form VMs in glioma. Expression of , , and was detected by real-time qPCR or western blot in glioma.

View Article and Find Full Text PDF

Glioblastomas are the most common and malignant intracranial tumors with a low survival rate. Dysregulation of long non-coding RNAs and RNA-binding protein causes various diseases, including cancers. However, the function of LINC00680 and TTN-AS1 in the progression of glioblastomas is still elusive.

View Article and Find Full Text PDF

Upstream ORF (uORF) is a translational initiation element located in the 5'UTR of eukaryotic mRNAs. Studies have found that uORFs play an important regulatory role in many diseases. Based on The Cancer Genome Atlas database, the results of our experiments and previous research evidence, we investigated transcription factor AP-4 (TFAP4) and its uORF, LIM and SH3 protein 1 (LASP1), long noncoding RNA 00520 (LINC00520), and microRNA (miR)-520f-3p as candidates involved in glioma malignancy, which is a poorly understood process.

View Article and Find Full Text PDF

Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells.

View Article and Find Full Text PDF

The blood-tumor barrier (BTB) limits the transport of chemotherapeutic drugs to brain tumor tissues and impacts the treatment of glioma. Long non-coding RNAs play critical roles in various biological processes of tumors; however, the function of these in BTB permeability is still unclear. In this study, we have identified that long intergenic non-protein coding RNA 174 (linc00174) was upregulated in glioma endothelial cells (GECs) from glioma tissues.

View Article and Find Full Text PDF

There is growing evidence that the long non-coding RNAs(lncRNAs) play an important role in the biological behaviors of glioblastoma cells. In this study, we elucidated the function and possible effect and molecular mechanisms of lncRNA-Linc-00313 on the biological behaviors of glioblastoma cells as well as UPF1 function as a RNA-binding protein to enhance its stability. Here, we used qRT-PCR and western blot to measure the expression, cell Transfection to disrupt the expression of genes, cell viability analysis, quantization of apoptosis, cell migration, and invasion assays, Reporter vectors construction and luciferase assays to investigate the malignant biological behaviors of cells, human lncRNA microarrays, RNA-Immunoprecipitation, dual-luciferase gene reporter assay, half-life assay and chromatin immunoprecipitation to verify the binding sites, tumor xenograft implantation for in vivo experiment, SPSS 18.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the blood-tumor barrier (BTB) limits the delivery of antitumor drugs to glioma tissues and examines ways to improve its permeability.
  • - Researchers found that the RNA-binding protein KHDRBS3 interacts with circular RNA cDENND4C, and together they stabilize each other, impacting the expression of tight junction proteins that regulate BTB permeability.
  • - The study suggests that manipulating the KHDRBS3/cDENND4C/miR-577 pathway can enhance the delivery of the chemotherapy drug doxorubicin (DOX) across the BTB, potentially offering new treatment strategies for brain tumors.
View Article and Find Full Text PDF

Background: Glioma is the most common and lethal type of malignant brain tumor. Accumulating evidence has highlighted that RNA binding protein APOBEC1 complementation factor (A1CF) is involved in various cellular processes by modulating RNA expression, and acts as an oncogene in breast cancer. However, the function of A1CF in glioma remained unclear.

View Article and Find Full Text PDF

Background: Angiogenesis plays a critical role in the progression of glioma. Previous studies have indicated that RNA-binding proteins (RBPs) interact with RNAs and participate in the regulation of the malignant behaviors of tumors. As a type of endogenous non-coding RNAs, circular RNAs (circRNAs) are abnormally expressed in various cancers and are involved in diverse tumorigeneses including angiogenesis.

View Article and Find Full Text PDF

Background: Long non-coding RNAs has been reported in tumorigenesis and play important roles in regulating malignant behavior of cancers, including glioma.

Methods: According to the TCGA database, we identified SNHG1, miRNA-154-5p and miR-376b-3p whose expression were significantly changed in the glioma samples. Furthermore, we investigated SNHG1, miRNA-154-5p and miR-376b-3p expression in clinical samples and glioma cell lines using qRT-PCR analysis and the correlation between them using RNA immunoprecipitation and dual-luciferase reporter.

View Article and Find Full Text PDF