Publications by authors named "Lianping Sun"

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Culm strength is crucial for rice growth, nutrition transportation, and structural resilience, which are essential for lodging resistance and stable production. In this study, we identified a rice thin culm mutant tc4, characterized by thinner culms and thicker cavity walls, resulting in weakened culm mechanical strength. Using map-based cloning, the candidate gene was isolated, and complementation and CRISPR/Cas9 experiments confirmed that a single nucleotide substitution in TC4 is responsible for the thin and brittle culm phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • The flowering period of rice is crucial for its adaptability and yield, and can be optimized through genome editing techniques like CRISPR/Cas9.
  • A new multiplex genome-editing vector targeting five flowering-related genes was developed and introduced into the Jiahe212 rice variety, resulting in mutant plants with varied flowering times.
  • Three specific mutant lines flowered earlier without significantly affecting yield, providing valuable resources for future rice breeding efforts aimed at improving adaptability and creating hybrids.
View Article and Find Full Text PDF

Three key factors determine yield in rice (Oryza sativa): panicle number, grain number, and grain weight. Panicle number is strongly associated with tiller number. Although many genes regulating tillering have been identified, whether Dof proteins are involved in controlling plant architecture remains unknown.

View Article and Find Full Text PDF

An inflammatory response is one of the pathogeneses of depression. The anti-inflammatory and neuroprotective effects of auraptene have previously been confirmed. We established an inflammatory depression model by lipopolysaccharide (LPS) injection combined with unpredictable chronic mild stress (uCMS), aiming to explore the effects of auraptene on depressive-like behaviors in adult mice.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs), the best-characterized calcium sensors in plants, regulate many aspects of plant growth and development as well as plant adaptation to biotic and abiotic stresses. However, how CPKs regulate the antioxidant defense system remains largely unknown. We previously found that impaired function of OsCPK12 leads to oxidative stress in rice, with more HO, lower catalase (CAT) activity, and lower yield.

View Article and Find Full Text PDF

Bioactive lipid mediator N-palmitoylethanolamide (PEA) is an endocannabinoid-like molecule. Based on our previous data, this study aimed to further investigate the antidepressant property of PEA via the peroxisome proliferator-activated receptor alpha (PPARα) pathway, focusing on the intervention of PEA on hippocampal neuroplasticity. Behavioral tests were performed in rats induced by unpredictable chronic mild stress (uCMS) in the last week of the experiment, and then the brain tissue samples were retained for subsequent immunohistochemical detection and Western blot analysis.

View Article and Find Full Text PDF

Background: Primary ciliary dyskinesia (PCD) is a type of ciliary dyskinesia that is usually caused by autosomal recessive inheritance and can manifest as recurrent respiratory infections, bronchiectasis, infertility, laterality defects, and chronic otolaryngological disease. Although ependymal cilia, which affect the flow of cerebrospinal fluid in the central nervous system, have much in common with respiratory cilia in terms of structure and function, hydrocephalus is rarely associated with PCD. Recently, variants of Forkhead box J1 (FOXJ1) have been found to cause PCD combined with hydrocephalus in a de novo, autosomal dominant inheritance pattern.

View Article and Find Full Text PDF

TAC1 is involved in photoperiodic and gravitropic responses to modulate rice dynamic plant architecture likely by affecting endogenous auxin distribution, which could explain TAC1 widespread distribution in indica rice. Plants experience a changing environment throughout their growth, which requires dynamic adjustments of plant architecture in response to these environmental cues. Our previous study demonstrated that Tiller Angle Control 1 (TAC1) modulates dynamic changes in plant architecture in rice; however, the underlying regulatory mechanisms remain largely unknown.

View Article and Find Full Text PDF

Formation of the pollen wall, which is mainly composed of lipid substances secreted by tapetal cells, is important to ensure pollen development in rice. Although several regulatory factors related to lipid biosynthesis during pollen wall formation have been identified in rice, the molecular mechanisms controlling lipid biosynthesis are unclear. In this study, we isolated the male-sterile rice mutant oslddt1 (leaked and delayed degraded tapetum 1).

View Article and Find Full Text PDF

The seed-setting rate has a significant effect on grain yield in rice (Oryza sativa L.). Embryo sac development is essential for seed setting; however, the molecular mechanism underlying this process remains unclear.

View Article and Find Full Text PDF

Heading date is crucial for rice reproduction and the geographical expansion of cultivation. We fine-mapped qHD5 and identified LOC_Os05g03040, a gene that encodes an AP2 transcription factor, as the candidate gene of qHD5 in our previous study. In this article, using two near-isogenic lines NIL(BG1) and NIL(XLJ), which were derived from the progeny of the cross between BigGrain1 (BG1) and Xiaolijing (XLJ), we verified that LOC_Os05g03040 represses heading date in rice through genetic complementation and CRISPR/Cas9 gene-editing experiments.

View Article and Find Full Text PDF

Introduction: Circadian clocks coordinate internal physiology and external environmental factors to regulate cereals flowering, which is critical for reproductive growth and optimal yield determination.

Objectives: In this study, we aimed to confirm the role of OsLUX in flowering time regulation in rice. Further research illustrates how the OsELF4s-OsELF3-1-OsLUX complex directly regulates flowering-related genes to mediate rice heading.

View Article and Find Full Text PDF

Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed.

View Article and Find Full Text PDF

Plant architecture is dynamic as plants develop. Although many genes associated with specific plant architecture components have been identified in rice, genes related to underlying dynamic changes in plant architecture remain largely unknown. Here, we identified two highly similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and RIL-Compact (C).

View Article and Find Full Text PDF

Grain size is a key constituent of grain weight and appearance in rice. However, insufficient attention has been paid to the small-effect quantitative trait loci (QTLs) on the grain size. In the present study, residual heterozygous populations were developed for mapping two genetically linked small-effect QTLs for grain size.

View Article and Find Full Text PDF

In angiosperms, anther development comprises of various complex and interrelated biological processes, critically needed for pollen viability. The transitory callose layer serves to separate the meiocytes. It helps in primexine formation, while the timely degradation of tapetal cells is essential for the timely callose wall dissolution and pollen wall formation by providing nutrients for pollen growth.

View Article and Find Full Text PDF

Rice ( L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands.

View Article and Find Full Text PDF

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members.

View Article and Find Full Text PDF

Tiller number is a crucial agronomic trait that directly affects the number of effective panicles and yield formation in rice. Here, we report a semi-dwarf and low tillering mutant Osdlt10 (dwarf and low tillering 10) that exhibited reduced tiller number, semi-dwarfism, increased grain width, low seed-setting rate, curled leaf tip and a series of abnormalities of agronomic traits. Phenotypic observations showed that Osdlt10 mutants had defects in tiller bud formation and grew slowly at the tillering stage.

View Article and Find Full Text PDF

Seed setting rate is one of the major components that determine rice (Oryza sativa L.) yield. Successful fertilization is necessary for normal seed setting.

View Article and Find Full Text PDF

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice.

View Article and Find Full Text PDF

OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation.

View Article and Find Full Text PDF
Article Synopsis
  • The systematic coordination of processes is crucial for male reproductive development in flowering plants, particularly in the degradation of the anther wall for pollen formation.
  • A conserved gene related to glycerol-3-phosphate acyltransferase plays a key role in the degradation of the anther wall and the formation of pollen exine, with mutations leading to male sterility due to failed pollen maturation.
  • The study offers insights into the gene's function in rice male reproductive development and its potential application in hybrid rice breeding.
View Article and Find Full Text PDF