Publications by authors named "Lianjun Zheng"

Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.

View Article and Find Full Text PDF
Article Synopsis
  • Neurodegenerative diseases (NDDs) are chronic disorders affecting cognitive and motor functions, and Zingiber officinale (ginger) is traditionally used to treat these conditions, though its molecular effects were not thoroughly studied.
  • Using methods like network pharmacology and molecular docking, the study identified five key targets of Z. officinale involved in NDD treatment, and pinpointed several compounds as its main active ingredients.
  • The research confirmed the effectiveness of Z. officinale through biological experiments, highlighting its potential in treating NDDs and providing useful insights for future applications.
View Article and Find Full Text PDF

Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure-function relationships for transport in these materials. This experimental-theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine).

View Article and Find Full Text PDF

Background: American ginseng (AG) is a valuable medicine widely consumed as a herbal remedy throughout the world. Huge price difference among AG with different growth years leads to intentional adulteration for higher profits. Thus, developing reliable approaches to authenticate the cultivation ages of AG products is of great use in preventing age falsification.

View Article and Find Full Text PDF

The development of light-harvesting devices based on molecular materials depends critically on the ability to focus the electronic oscillator strength of molecules into the UV-vis spectral window. Typical molecular chromophores have only about 1% of their total electronic oscillator strength in this spectral region and thus perform at a small fraction of their possible effectiveness. This theoretical study finds that the electronic oscillator strength of polyenes in the UV-vis region may be enhanced by 1 order of magnitude using electrostatic fields, motivating specific experimental studies of oscillator strength focusing.

View Article and Find Full Text PDF

The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit.

View Article and Find Full Text PDF