Block copolymers have attracted considerable interest in the fields of nanoscience and nanotechnology because these polymers afford well-defined nanostructures via self-assembly. An in-depth understanding of solvent effects on the physicochemical properties of these microdomains is crucial for their preparation and utilization. Herein, we employed in situ spectroscopic ellipsometry and single-molecule fluorescence techniques to gain detailed insights into microdomain properties in polystyrene--poly(ethylene oxide) (PS--PEO) films exposed to ethanol- and water-saturated N.
View Article and Find Full Text PDFFluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics.
View Article and Find Full Text PDFThe presence of metastable Bernal stacking boron nitride is verified by combining second harmonic generation (SHG) and photoluminescence (PL) spectroscopy. The scanning confocal cryomicroscope, operating in the deep-ultraviolet range, shows a one-to-one correlation between inversion symmetry breaking probed by SHG and the detection of an intense PL line at ∼6.035 eV, the specific signature of the noncentrosymmetric Bernal stacking.
View Article and Find Full Text PDFA comparative study of the intermolecular dynamics of CS in monocationic and dicationic ionic liquids (ILs) was performed using optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The reduced spectral densities (RSDs) of mixtures of CS in 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CCim][NTf] for n = 3-5) and 1,2n-bis(3-methylimidazolium-1-yl) alkane bis[(trifluoromethane)sulfonyl]amide ([(Cim)C][NTf] for n = 3-5) were investigated as a function of concentration at 295 K. An additivity model was used to obtain the CS contribution to the RSD of a mixture in the 0-200 cm region.
View Article and Find Full Text PDFAtomistically detailed molecular dynamics simulations were used to investigate the temperature dependence of the specific volume, dynamic properties, and viscosity of linear alkyl chain ([CCIm][NTf], n = 3-7) and branched alkyl chain ([(n - 2)mCCIm][NTf]) ionic liquids (ILs). The trend of the glass transition temperature (T) values obtained in the simulations as a function of the alkyl chain length of cations was similar to the trend seen in experiments. In addition, the system relaxation behavior as determined from the temperature dependence of the diffusion coefficient, rotational relaxation time, and viscosity close to T was observed to follow the Vogel-Fulcher-Tammann expression.
View Article and Find Full Text PDFThis article describes a comparative study of the low-frequency (0-450 cm) Kerr spectra of the branched 1-(iso-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([(N - 2)mCCim][NTf] with N = 3-7) ionic liquids (ILs) and that of the linear 1-(n-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([CCim][NTf] with N = 2-7) ILs. The spectra were obtained by use of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular spectrum of a branched IL is similar to that of a linear IL that is of the same alkyl chain length rather than of the same number of carbon atoms in the alkyl chain.
View Article and Find Full Text PDFA series of branched ionic liquids (ILs) based on the 1-(iso-alkyl)-3-methylimidazolium cation from 1-(1-methylethyl)-3-methylimidazolium bistriflimide to 1-(5-methylhexyl)-3-methylimidazolium bistriflimide and linear ILs based on the 1-(n-alkyl)-3-methylimidazolium cation from 1-propyl-3-methylimidazolium bistriflimide to 1-heptyl-3-methylimidazolum bistriflimide were recently synthesized and their physicochemical properties characterized. For the ILs with the same number of carbons in the alkyl chain, the branched IL was found to have the same density but higher viscosity than the linear one. In addition, the branched IL 1-(2-methylpropyl)-3-methylimidazolium bistriflimide ([2mC3C1Im][NTf2]) was found to have an abnormally high viscosity.
View Article and Find Full Text PDFThe principal difference between 1-benzyl-3-methyl-imidazolium triflimide [BzC1im][NTf2] and an equimolar mixture of benzene and dimethylimidazolium triflimide [C1C1im][NTf2] is that in the former the benzene moieties are tied to the imidazolium ring, while in the latter they move independently. We use femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) and molecular simulations to explore some properties of these two systems. The Kerr spectra show small differences in the spectral densities; the simulations also show very similar environments for both the imidazolium rings and the phenyl or benzene parts of the molecules.
View Article and Find Full Text PDFThe local structure and intermolecular dynamics of an equimolar mixture of benzene and 1,3-dimethylimidazolium bis[(trifluoromethane)sulfonyl]amide ([dmim][NTf2]) were studied using molecular dynamics (MD) simulations and femtosecond optical Kerr effect (OKE) spectroscopy. The OKE spectrum of the benzene/[dmim][NTf2] mixture at 295 K was analyzed by comparing it to an ideal mixture spectrum obtained by taking the volume-fraction weighted sum of the OKE spectra of the pure liquids. The experimental mixture spectrum is higher in frequency and broader than that of the ideal mixture spectrum.
View Article and Find Full Text PDFThe intermolecular dynamics of dilute solutions of CS2 in 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CnC1im][NTf2] for n = 1-4) were studied at 295 K using femtosecond optical Kerr effect (OKE) spectroscopy. The OKE spectra of the CS2/ionic liquid (IL) mixtures were analyzed using an additivity model to obtain the CS2 contribution to the OKE spectrum from which information about the intermolecular modes of CS2 in these mixtures was gleaned. The intermolecular spectrum of CS2 in these mixtures is lower in frequency and narrower than that of neat CS2, as found previously for CS2 in [C5C1im][NTf2].
View Article and Find Full Text PDF