Publications by authors named "Lianhuan Han"

Electrochemical CO reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C product generation. To enhance Cu's electronic structure and direct its selectivity toward C products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst.

View Article and Find Full Text PDF

Two challenges should be overcome for the ultra-precision machining of micro-optical element with freeform curved surface: one is the intricate geometry, the other is the hard-to-machining optical materials due to their hardness, brittleness or flexibility. Here scanning electrochemical probe lithography (SECPL) is developed, not only to meet the machining need of intricate geometry by 3D direct writing, but also to overcome the above mentioned mechanical properties by an electrochemical material removal mode. Through the electrochemical probe a localized anodic voltage is applied to drive the localized corrosion of GaAs.

View Article and Find Full Text PDF

Intracellular calcium ion detection is of great significance for understanding the cell metabolism and signaling pathways. Most of the current ionic sensors either face the size issue or sensitivity limit for the intracellular solution with high background ion concentrations. In this paper, we proposed a calmodulin (CaM) functionalized nanopore for sensitive and selective Ca detection inside living cells.

View Article and Find Full Text PDF

Enhancing the electrochemical activity of graphene holds great significance for expanding its applications in various electrochemistry fields. In this study, we have demonstrated a facile and quantitative approach for modulating the defect density of single-layer graphene (SLG) an electrochemically induced bromination process facilitated by cyclic voltammetry. This controlled defect engineering directly impacts the heterogeneous electron transfer (HET) rate of SLG.

View Article and Find Full Text PDF

Electrochemical nanoimprint lithography (ECNL) has emerged as a promising technique for fabricating three-dimensional micro/nano-structures (3D-MNSs) directly on semiconductor wafers. This technique is based on a localized corrosion reaction induced by the contact potential across the metal/semiconductor boundaries. The anodic etching of semiconductor and the cathodic reduction of electron acceptors occur at the metal/semiconductor/electrolyte interface and the Pt mold surface, respectively.

View Article and Find Full Text PDF

Electrocatalytic CO reduction reaction (CO RR) based on molecular catalysts, for example, cobalt porphyrin, is promising to enhance the carbon cycle and mitigate current climate crisis. However, the electrocatalytic performance and accurate evaluations remain problems because of either the low loading amount or the low utilization rate of the electroactive CoN sites. Herein a monomer is synthesized, cobalt(II)-5,10,15,20-tetrakis(3,5-di(thiophen-2-yl)phenyl)porphyrin (CoP), electropolymerized onto carbon nanotubes (CNTs) networks, affording a molecular electrocatalyst of 3D microporous nanofilm (EP-CoP, 2-3 nm thickness) with highly dispersed CoN sites.

View Article and Find Full Text PDF

As a semimetal with a zero band gap and single-atom-scale thickness, single layer graphene (SLG) has excellent electron conductivity on its basal plane. If the band gap could be opened and regulated controllably, SLG would behave as a semiconductor. That means electronic elements or even electronic circuits with single-atom thickness could be expected to be printed on a wafer-scale SLG substrate, which would bring about a revolution in Moore's law of integrated circuits, not by decreasing the feature size of line width, but by piling up the atomic-scale-thickness of an SLG circuit board layer by layer.

View Article and Find Full Text PDF

Aqueous zinc-metal batteries have attracted extensive attention due to their outstanding merits of high safety and low cost. However, the intrinsic thermodynamic instability of zinc in aqueous electrolyte inevitably results in hydrogen evolution, and the consequent generation of OH at the interface will dramatically exacerbate the formation of dead zinc and dendrites. Herein, a dynamically interfacial pH-buffering strategy implemented by N-methylimidazole (NMI) additive is proposed to remove the detrimental OH at zinc/electrolyte interface in real-time, thus eliminating the accumulation of by-products fundamentally.

View Article and Find Full Text PDF

If hydrogen can be stored and carried safely at a high density, hydrogen-fuel cells offer effective solutions for vehicles. The stable chemisorption of atomic hydrogen on single layer graphene (SLG) seems a perfect solution in this regard, with a theoretical maximum storage capacity of 7.7 wt %.

View Article and Find Full Text PDF

Scanning electrochemical microscopy (SECM) is one of the most important instrumental methods of modern electrochemistry due to its high spatial and temporal resolution. We introduced SECM into nanomachining by feeding the electrochemical modulations of the tip electrode back to the positioning system, and we demonstrated that SECM is a versatile nanomachining technique on semiconductor wafers using electrochemically induced chemical etching. The removal profile was correlated to the applied tip current when the tip was held stationary and when it was moving slowly (<20 μm s ), and it followed Faraday's law.

View Article and Find Full Text PDF

Here we propose a strategy of radical oxidation reaction for the high-efficiency production of graphene oxide (GO). GO plays important roles in the sustainable development of energy and the environment, taking advantages of oxygen-containing functional groups for good dispersibility and assembly. Compared with Hummers' method, electrochemical exfoliation of graphite is considered facile and green, although the oxidation is fairly low.

View Article and Find Full Text PDF

Here we report photoelectric-effect-enhanced interfacial charge transfer reactions. The electrochemical corrosion rate of n-type gallium arsenide (n-GaAs) induced by the contact potential at platinum (Pt) and GaAs boundaries can be accelerated by the photoelectric effect of n-GaAs. When a GaAs wafer is illuminated with a xenon light source, the electrons in the valence band of GaAs will be excited to the conduction band and then move to the Pt boundaries due to the different work functions of the two materials.

View Article and Find Full Text PDF

Paper based assays are paving the way to automated, simplified, robust and cost-effective point of care testing (POCT). We propose a method for fabricating three dimensional (3D) microfluidic paper based analytical devices (μPADs) via combining thin adhesive films and paper folding, which avoids the use of cellulose powders and the complex folding sequence and simultaneously permits assays in several layers. To demonstrate the effectiveness of this approach, a 3DμPADs was designed to conduct more assays on a small footprint, allowing dual colorimetric and electrochemical detections.

View Article and Find Full Text PDF

The functional three dimensional micro-nanostructures (3D-MNS) play crucial roles in integrated and miniaturized systems because of the excellent physical, mechanical, electric and optical properties. Nanoimprint lithography (NIL) has been versatile in the fabrication of 3D-MNS by pressing thermoplastic and photocuring resists into the imprint mold. However, direct nanoimprint on the semiconductor wafer still remains a great challenge.

View Article and Find Full Text PDF

Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels () become equal.

View Article and Find Full Text PDF

Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications.

View Article and Find Full Text PDF

Due to a high turnover coefficient, redox enzymes can serve as current amplifiers which make it possible to explore their catalytic mechanism by electrochemistry at the level of single molecules. On modified nanoelectrodes, the voltammetric behavior of a horseradish peroxidase (HRP) catalyzed hydroperoxide reduction no longer presents a continuous current response, but a staircase current response. Furthermore, single catalytic incidents were captured through a collision mode at a constant potential, from which the turnover number of HRP can be figured out statistically.

View Article and Find Full Text PDF

In the past several decades, electrochemical machining (ECM) has enjoyed the reputation of a powerful technique in the manufacturing industry. Conventional ECM methods can be classified as electrolytic machining and electroforming: the former is based on anodic dissolution and the latter is based on cathodic deposition of metallic materials. Strikingly, ECM possesses several advantages over mechanical machining, such as high removal rate, the capability of making complex three-dimensional structures, and the practicability for difficult-to-cut materials.

View Article and Find Full Text PDF

Can isotropic wet chemical etching be controlled with a spatial resolution at the nanometer scale, especially, for the repetitive microfabrication of hierarchical 3D μ-nanostructures on the continuously curved surface of functional materials? We present an innovative wet chemical etching method called "electrochemical buckling microfabrication": first, a constant contact force is applied to generate a hierarchical 3D μ-nanostructure on a mold electrode surface through a buckling effect; then, the etchant is electrogenerated on-site and confined close to the mold electrode surface; finally, the buckled hierarchical 3D μ-nanostructures are transferred onto the surface of a Ga In P coated GaAs wafer through WCE. The concave microlens, with a Fresnel structure, has an enhanced photoluminescence at 630 nm. Comparing with energy beam direct writing techniques and nanoimprint lithography, this method provides an electrochemical microfabrication pathway for the semiconductor industry, with low cost and high throughput.

View Article and Find Full Text PDF

Here we emphasise the importance of the dielectric environment on the electron transfer behavior in interfacial electrochemical systems. Through doping cobalt hexacyanide (Co(CN)) into single microcrystals of sodium chloride (NaCl), for the first time, we obtained the direct electrochemical behavior of Co(CN) which is hardly ever obtained in either aqueous or conventional nonaqueous solutions. DFT calculations elucidate that, as the Co(CN) anions occupy the lattice units of NaCl in the NaCl microcrystal, the redox energy barrier of Co(CN) is decreased dramatically due to the low dielectric constant of NaCl.

View Article and Find Full Text PDF

We report synergetic effect enhanced photoelectrocatalysis, in which Fe(3+) and Br(-) are used as the acceptors of photogenerated charges on TiO2 nanoparticles. The kinetic rate of interfacial charge transfer is promoted from (4.0 ± 0.

View Article and Find Full Text PDF

Solar energy is the most abundant nature resource and plays important roles in the sustainable developments of energy and environment. Scanning photoelectrochemical microscopy provides a high-throughput screening method by introducing the combinatorial technique to prepare the substrate with photoelectrochemical catalyst array. However, the signal/noise (S/N) ratio suffers from the background current of indium-tin oxide or fluorine-doped tin oxide itself, including a transient charge-discharge current of electric double layer and a steady-state photocatalytic current.

View Article and Find Full Text PDF

The confined etchant layertechnique (CELT) has been proved an effective electrochemical microfabrication method since its first publication at Faraday Discussions in 1992. Recently, we have developed CELT as an electrochemical mechanical micromachining (ECMM) method by replacing the cutting tool used in conventional mechanical machining with an electrode, which can perform lathing, planing and polishing. Through the coupling between the electrochemically induced chemical etching processes and mechanical motion, ECMM can also obtain a regular surface in one step.

View Article and Find Full Text PDF

Objective: To test the proof-of-principle that genetically-engineered mesenchymal stem cells (MSCs) transfected with the human hyperpolarization-activated cyclic nucleotide-gated channel 1 (hHCN1) gene can be modified to become cardiac pacemaker cells.

Methods: MSCs were transfected with the hHCN1 gene using lentiviral-based transfection. The expressed pacemaker current (I(f)) in hHCN1-transfected MSCs was recorded using whole-cell patch-clamp analysis.

View Article and Find Full Text PDF

Substrate leveling is an essential but neglected instrumental technique of scanning electrochemical microscopy (SECM). In this technical note, we provide an effective substrate leveling method based on the current feedback mode of SECM. By using an air-bearing rotary stage as the supporter of an electrolytic cell, the current feedback presents a periodic waveform signal, which can be used to characterize the levelness of the substrate.

View Article and Find Full Text PDF