Publications by authors named "Liangyu Chai"

Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label all individuals in each of them.

View Article and Find Full Text PDF

In this paper, we introduce a novel yet challenging research problem, interactive crowd video generation, committed to producing diverse and continuous crowd video, and relieving the difficulty of insufficient annotated real-world datasets in crowd analysis. Our goal is to recursively generate realistic future crowd video frames given few context frames, under the user-specified guidance, namely individual positions of the crowd. To this end, we propose a deep network architecture specifically designed for crowd video generation that is composed of two complementary modules, each of which combats the problems of crowd dynamic synthesis and appearance preservation respectively.

View Article and Find Full Text PDF