The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models.
View Article and Find Full Text PDFScope: Phenotypic switch of macrophage polarization in adipose tissue has been associated with obesity-induced adipose tissue inflammation (OATI). Therefore, this study aims to explore the possible mechanism of adipocytes-derived exosomes (ADEs) carrying microRNA-1224 (miR-1224) in M2 macrophage polarization of OATI.
Methods And Results: miR-1224-knockout (miR-1224-KO) mice for this study, and isolated primary adipocytes from high-fat diet (HFD) or normal diet (SD)-fed mice are developed.
Diabetic nephropathy (DN) is a severe complication of diabetes lethal for end-stage renal disease, with less treatment methodologies and uncertain pathogenesis. In the current study, we determined the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing microRNA (miR)-15b-5p in DN. After extraction and identification of MSC-derived EVs, mouse podocyte line MPC5 was selected to establish an in vitro high-glucose (HG) cell model, where expression of miR-15b-5p, pyruvate dehydrogenase kinase 4 (PDK4) and VEGFA expression in tissues and cells were determined.
View Article and Find Full Text PDFBackground: Diabetes mellitus (DM), a most common chronic disease, is featured with impaired endothelial function and bioavailability of nitric oxide (NO), while E3 ubiquitin ligase appears to alleviate endothelial dysfunction as a promising option for DM treatment. Herein, we aimed to determine whether E3 ubiquitin ligase casitas B-lineage lymphoma (Cbl) alleviates endothelial dysfunction in DM rats by JAK2/STAT4 pathway.
Methods: A rat model of DM was developed through intraperitoneal injection of streptozotocin, followed by collection of aortic tissues to determine the expression of Cbl, JAK2, runt-related transcription factor 3 (Runx3) and STAT4.
Objective: Previous studies showed that variants in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). However, the relationships between mitochondrial tRNA (mt-tRNA) variants and T2DM remain poorly understood.
Methods: In this study, we performed a mutational screening of 22 mt-tRNA genes in a cohort of 200 Han Chinese subjects with T2DM and 200 control subjects through PCR-Sanger sequencing.
Exp Clin Endocrinol Diabetes
September 2018
Objective: We aimed to evaluate the effect of 12-week aerobic exercise training on fetuin-A levels in type 2 diabetes mellitus and examine the relationships between fetuin-A and adipocytokine levels and cardiovascular risk factors.
Methods: The study included 32 patients with type 2 diabetes mellitus who were assigned to an exercise or a control group. The exercise group underwent 12 weeks of exercise (consisting of a 5-min warm-up, 60-min aerobic bicycle training performed at 70% of the maximal heart rate, a cool-down period, 5 times/week).
Objective: To investigate the relationship between the resistin intronic +299G/A polymorphism and nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM).
Methods: We selected 738 T2DM patients, including 395 with NAFLD and 343 without fatty liver disease, as well as 279 healthy control individuals, and analyzed their resistin +299G/A polymorphism genotype by polymerase chain reaction-restriction fragment length polymorphism.
Results: Plasma resistin levels in T2DM patients with NAFLD were at the highest (P<0.