Multiply charged ions produced by electrospray ionization (ESI) of heterogeneous mixtures of macromolecular analytes under native conditions are typically confined to relatively narrow ranges of mass-to-charge (/) ratio, often with extensive overlap. This scenario makes charge and mass assignments extremely challenging, particularly when individual charge states are unresolved. An ion/ion reaction strategy involving multiply charged ion attachment (MIA) to the mixture components in a narrow range of / can facilitate charge and mass assignment.
View Article and Find Full Text PDFBone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored.
View Article and Find Full Text PDFInt J Mass Spectrom
September 2024
Single-frequency ion parking, a useful technique in electrospray mass spectrometry (ESI-MS), involves gas-phase charge-reduction ion/ion reactions in an electrodynamic ion trap in conjunction with the application of a supplementary oscillatory voltage to selectively inhibit the reaction rate of an ion of interest. The ion parking process provides a means for limiting the extent of charge reduction in a controlled fashion and allows for ions distributed over a range of charge states to be concentrated into fewer charge states (a single charge state under optimal conditions). As charge reduction inherently leads to an increase in the mass-to-charge () ratio of the ions, it is important that the means for storing and analyzing ions be able to accommodate ions of high ratios.
View Article and Find Full Text PDFNative mass spectrometry (MS) focuses on measuring the masses of large biomolecular complexes and probing their structures. Large biomolecular complexes are readily introduced into mass spectrometers as gas-phase ions using electrospray ionization (ESI); however, the ions tend to be heavily adducted with solvent and salts, which leads to mass measurement errors. Various solution clean-up approaches can reduce the degree of adduction prior to introduction to the mass spectrometer.
View Article and Find Full Text PDF