The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.
View Article and Find Full Text PDFElectronic skin (e-skin) with skin-like flexibility and tactile sensation will promote the great advancements in the fields of wearable equipment. Thus, the multifunction and high robustness are two important requirements for sensing capability of the e-skin. Here, a fully organic self-powered e-skin (FOSE-skin) based on the triboelectric nanogenerator (TENG) is developed.
View Article and Find Full Text PDFUser-interactive electronic skin is capable of spatially mapping touch via electric readout and providing visual output as a human-readable response. However, the high power consumption, complex structure, and high cost of user-interactive electronic skin are notable obstacles for practical application. Here, we report a self-powered, user-interactive electronic skin (SUE-skin), which is simple in structure and low in cost, based on a proposed triboelectric-optical model.
View Article and Find Full Text PDF