Publications by authors named "Liangwei Zhang"

Developing a novel strategy to improve the optical performances of fluorescent probes is a vital factor in elevating its practical application; viz., novel biocompatible fluorescent probes with excellent multifunctions exhibited unparalleled advantages in probing functions of intracellular molecules to elucidate intracellular events in living systems. Herein, we have successfully constructed a new strategy that aggregation and coordination synergistically induce (2-hydroxylphenyl-benzothiazole) HBT derivatives to form excimers with large red-shifted fluorescence and application for insight into stress-response zinc fluctuations in living systems.

View Article and Find Full Text PDF

Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin resulting from the enzymatic hydrolysis of cellulose. It is a major source of carbon for soil bacteria. In bacteria, the phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS), encoded by the operon, is responsible for the transport and utilization of cellobiose.

View Article and Find Full Text PDF

Signaling molecules in cellular responses to foreign stimuli are described as static up- or down-concentration changes during signal transduction. This is because analytical methods for transducing molecules are much slower than the signaling events. In this study, we develop a dynamic cell model and reveal the temporal regulation of signal transduction events in response to reactive oxygen species (ROS).

View Article and Find Full Text PDF

The anaerobic ammonium oxidation (anammox) process is adversely affected by the limitation of inorganic carbon (IC). In this research, a new technique was introduced to assist anammox biomass in counteracting the adverse effects of IC limitation by incorporating waste iron scraps (WIS), a cheap and easily accessible byproduct of lathe cutting. Results demonstrated that reducing the influent IC/TN ratio from 0.

View Article and Find Full Text PDF

Hydrogen polysulfide (HS, n > 1) is an important component of reactive sulfur species (RSS), which is an important substance for maintaining the redox balance in cells. However, limited recognition moieties are available for hydrogen polysulfide probe design. In this study, we have constructed a small library containing several organic molecules to explore a new specific recognition moiety for HS fluorescent probe design.

View Article and Find Full Text PDF

Objective: To identify the clinical characteristics of patients who underwent superselective renal arterial embolization (SRAE) after percutaneous nephrolithotomy (PCNL) and to explore the risk factors for failed initial SRAE after PCNL.

Materials And Methods: Patients who underwent SRAE for severe haemorrhage following PCNL between January 2014 and December 2020 were included in the study. The clinical data of those patients and the parameters and characteristics of the perioperative PCNL and SRAE procedures were collected and analysed.

View Article and Find Full Text PDF

Fondaparinux, a clinically approved anticoagulant pentasaccharide for the treatment of thrombotic diseases, displays better efficacy and biosafety than other heparin-based anticoagulant drugs. However, there is no suitable antidote available for fondaparinux to efficiently manage its potential bleeding risks, thereby precluding its widespread use. Herein, we describe a convergent and stereocontrolled approach to efficiently synthesize an aminopentyl-functionalized pentasaccharide, which is further used to prepare fondaparinux-based biotin conjugates and clusters.

View Article and Find Full Text PDF

As one typical toxic and dangerous heavy metal, mercury brings incalculable hazards to the environment and human, the mechanism at the molecular level is unclear. There is no visualized evidence to support directly that mercury ions (Hg) exposure may induce secondary stress, which is associated with the risk of hypoxia microenvironment in biological systems. Hypoxia occurs in many physiological and pathophysiological processes in the living system, accompanying overexpression of various biomarkers, such as nitroreductase (NTR).

View Article and Find Full Text PDF

Development of new fluorescent probes for mercury ion analysis in environmental or living organism is undergoing quick growth due to its detrimental toxicity to environmental safety, ecological security, and human being. However, in most cases, the industrial waste water is acidic whereas it remains a great challenge to real-time monitor mercury ion directly at low pH using small molecule fluorescence probe. In this study, we have successfully designed and synthesized the Naph (1, 8-Naphthalimide derivative) -based small molecule probe termed as Naph-NSS capable of monitoring mercury ion in a broad range at low pH (from 2.

View Article and Find Full Text PDF

Sulfur dioxide (SO) and its derivatives have long been considered as hazardous environmental pollutants but commonly used as food additives in safe dose range. They also could be produced from biological metabolism process of sulfur-containing amino acids. However, their physiological roles remain extremely obscure mainly due to lack of efficient tools for monitoring and imaging strategy establishment.

View Article and Find Full Text PDF

Increasingly grim environmental pollutions are closely related with the occurrence and development of diseases. However, it's obscure how environmental stress disturbs the normal physiological process, and then how endogenous reactive species mend the cases. Hypoxia/reperfusion (H/R), a common and intractable injury in aquaculture and clinic, can induce oxidative stress and ultimately cause irreversible injury to organism.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal interstitial lung disease due to various challenges in diagnosis and treatment. Due to its complicated pathogenesis and difficulty in early diagnosis, there is no effective cure. Cyclooxygenase-2 (COX-2) is inextricably associated with pulmonary fibrosis.

View Article and Find Full Text PDF

Rare studies provided evidence for the real-time monitoring of stress response cysteine fluctuations. Here, we have successfully designed and synthesized a cysteine-selective fluorescent probe 1 to monitor stress response Cys fluctuations, providing visual evidence of Hg2+ regulated cysteine fluctuations for the first time, which may open a new way to help researchers to reveal the mechanism of heavy metal ion poisoning.

View Article and Find Full Text PDF

Discovering novel chemical reactions is important for bioanalysis. Herein, we report a tactic for bio-thiol sensing and protein labeling agent design by the installation of a sulfoxide group onto the skeleton of various fluorophores, and powerfully validate its abilities, which may shed light on the development of specific protein tags to give insight into their biological functions.

View Article and Find Full Text PDF

Mercury ions are crucially harmful to ecosystem and human being due to their characters of bioaccumulation and difficulty of biochemical degradation. Therefore, development of mercury ion detection methods has attracted increasing interests recently. In this study, we successfully synthesized a hydroxyphenylbenzothiazole (HBT)-based fluorescent probe HBT-Hg in an extremely simple manner for mercuric ions detection.

View Article and Find Full Text PDF

Hydrogen polysulfides (HS, n>1) as important intracellular reactive sulfur species (RSS) are believe to be responsible for cellular redox regulation. Lots of researches about HS focusing on their formation, detection and bio-function in signalling regulation are spring up but with poor understanding, especially for biosynthesis and bio-function remain complicated and confusing. Recent studies reveal that thionitrous acid (HSNO) as potential intermediate linked signalling molecules of nitrogenous and sulphureous during biotic redox regulation.

View Article and Find Full Text PDF

Hypoxic stress is a common concern in medicine and biology, which can induce the cellular injury and death by excess production of reactive oxygen species (ROS). Hypochlorous acid (HOCl), one of the ROS, plays a crucial role in the oxidative damage to tissue proteins in the pathogenesis of various diseases. Therefore, excess production of HOCl might be an important factor for the damage caused by hypoxic stress.

View Article and Find Full Text PDF

Solid evidence confirms that glutathione peroxidase (GPx) is a kind of vital protease in the first-line antioxidant defense system and participates in regulation of redox homeostasis as well as the pentose phosphate pathway. However, the current methods cannot achieve real-time and in situ visualization studies of GPx. In addition, GPx is highly reactive and susceptible to external interference, and there is rare research for exploring the roles of GPx under environmental factor exposure.

View Article and Find Full Text PDF

Cerebral ischemia/reperfusion (I/R) is common and intractable in the clinic, associated with the outburst of reactive oxygen species (ROS) in mitochondria. Although numerous research studies have been conducted to prove the protective-effect roles of glutathione (GSH) in this event, the changes in GSH concentrations in living cells remain largely unexplained, and there is scarce evidence by fluorescence imaging for its roles. Herein we have designed and synthesized two distinctive "off-on" near-infrared (NIR) fluorescent probes BCy-SeSe and BCy-SS based on a new fluorophore BCy-Keto for specific response to mitochondrial GSH changes during the cerebral I/R process.

View Article and Find Full Text PDF

Glutathione hydropersulfides (GSSH) are alluded to play crucial roles in signal transduction, redox homeostasis, and metabolic regulation. However, the detailed biological functions of GSSH in these aspects are extremely ambiguous. The key barrier to understand the role of GSSH in biological systems is a lack of detection tools with high spatiotemporal resolution.

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2), as a major component of reactive oxygen species (ROS), plays an important role in normal physiological processes. A H2O2 burst also occurs in the ischemia/reperfusion (I/R) process and causes a series of physiological and pathological injuries. Therefore, it is important to determine concentration fluctuations of H2O2.

View Article and Find Full Text PDF

A ratiometric fluorescent probe of methionine sulfoxide reductase, Msr-Ratio, was disclosed for monitoring the enzyme activity in vitro and in live cells. The probe displayed favorable properties such as a nearly 400-fold fluorescence change, fast response rate (<30 min), large Stokes shift (120 nm), and green emission (550 nm).

View Article and Find Full Text PDF

Three new cholestane-type sterols bearing an unusual ∆-24-oxo side chain, namely, dictyoptesterols A-C (1-3), were isolated from the brown alga Dictyopteris undulata Holmes, together with five known strutural analogues (4-8). Their structures were elucidated on the basis of by extensive spectroscopic analysis. The absolute configurations of the steroidal nuclei of the new compounds were proposed by a comparison of NMR data with those of related known compounds as well as biogenetic considerations.

View Article and Find Full Text PDF

The characters of σ- and π-holes of bromopentafluorobenzene (C6F5Br) enable it to interact with an electron-rich atom or group like pyridine which possesses an electron lone-pair N atom and a π ring. Theoretical studies of intermolecular interactions between C6F5Br and C5H5N have been carried out at the M06-2X/aug-cc-pVDZ level without and with the counterpoise method, together with single point calculations at M06-2X/TZVP, wB97-XD/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The σ- and π-holes of C6F5Br exhibiting positive electrostatic potentials make these sites favorably interact with the N atom and the π ring of C5H5N with negative electrostatic potentials, leading to five different dimers connected by a σ-holen bond, a σ-holeπ bond or a π-holeπ bond.

View Article and Find Full Text PDF

A new and straightforward method for the synthesis of 5-bromotetracenes through PBr-mediated cyclization of 1,7-diyn-3,6-bis(propargyl carbonate)s has been developed. This method offers several advantages such as easily accessible starting materials, high efficiency, and wide functional group compatibility. In addition, chloro- and iodo-substituted tetracenes were also synthesized using appropriate halogenating reagents.

View Article and Find Full Text PDF