Environ Sci Pollut Res Int
July 2023
As global warming becomes more prominent, the need to reduce carbon emissions to achieve China's carbon peak target is increasing. It is imperative to seek effective methods to predict carbon emissions and propose targeted emission reduction measures. In this paper, a comprehensive model integrating grey relational analysis (GRA), generalized regression neural network (GRNN) and fruit fly optimization algorithm (FOA) is constructed with carbon emission prediction as the research objective.
View Article and Find Full Text PDFRecycled aggregate concrete (RAC), due to its high porosity and the residual cement and mortar on its surface, exhibits weaker strength than common concrete. To guarantee the safe use of RAC, a compressive strength prediction model based on artificial neural network (ANN) was built in this paper, which can be applied to predict the RAC compressive strength for 28 days. A data set containing 88 data points was obtained by relative tests with different mix proportion designs.
View Article and Find Full Text PDFTo address the problem of low accuracy and poor robustness of in situ testing of the compressive strength of high-performance self-compacting concrete (SCC), a genetic algorithm (GA)-optimized backpropagation neural network (BPNN) model was established to predict the compressive strength of SCC. Experiments based on two concrete nondestructive testing methods, i.e.
View Article and Find Full Text PDF