Publications by authors named "Lianghui Guo"

Ion Imprinting Technology (IIT) is an innovative technique that produces Ion-Imprinted polymers (IIPs) capable of selectively extracting ions. IIPs exhibit strong specificity, excellent stability, and high practicality. Due to their superior characteristics, the application of IIPs for lithium resource extraction has garnered significant attention.

View Article and Find Full Text PDF

The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment.

View Article and Find Full Text PDF

Seizure prediction of epileptic preictal period through electroencephalogram (EEG) signals is important for clinical epilepsy diagnosis. However, recent deep learning-based methods commonly employ intra-subject training strategy and need sufficient data, which are laborious and time-consuming for a practical system and pose a great challenge for seizure predicting. Besides, multi-domain characterizations, including spatio-temporal-spectral dependencies in an epileptic brain are generally neglected or not considered simultaneously in current approaches, and this insufficiency commonly leads to suboptimal seizure prediction performance.

View Article and Find Full Text PDF

Unlabelled: Compared with the surface, the deep environment has the advantages of allowing "super-quiet and ultra-clean"-geophysical field observation with low vibration noise and little electromagnetic interference, which are conducive to therealization of long-term and high-precision observation of multi-physical fields, thus enabling the solution of a series of geoscience problems. In the Panyidong Coal Mine, where there are extensive underground tunnels at the depth of 848 m belowsea level, we carried out the first deep-underground geophysical observations, including radioactivity, gravity, magnetic, magne-totelluric, background vibration and six-component seismic observations. We concluded from these measurements that (1) the background of deep subsurface gravity noise in the long-period frequency band less than 2 Hz is nearly two orders ofmagnitude weaker than that in the surface observation environment; (2) the underground electric field is obviously weaker thanthe surface electric field, and the relatively high frequency of the underground field, greater than 1 Hz, is more than two orders of magnitude weaker than that of the surface electric field; the east-west magnetic field underground is approximately the same asthat at the surface; the relatively high-frequency north-south magnetic field underground, below 10 Hz, is at least one order ofmagnitude lower than that at the surface, showing that the underground has a clean electromagnetic environment; (3) in additionto the high-frequency and single-frequency noises introduced by underground human activities, the deep underground spacehas a sig-nificantly lower background vibration noise than the surface, which is very beneficial to the detection of weakearthquake and gravity signals; and (4) the underground roadway support system built with ferromagnetic material interferesthe geomagnetic field.

View Article and Find Full Text PDF

Chemical absorption method plays an important role in the process of CO separation. One major problem for chemical absorption is huge energy consumption, which is affected by the performance of absorbents. Developing a type of absorbent with high absorption capacity and low regenerative energy consumption is a research topic that attracts attention.

View Article and Find Full Text PDF

Motor imagery (MI) electroencephalography (EEG) decoding plays an important role in brain-computer interface (BCI), which enables motor-disabled patients to communicate with the outside world via external devices. Recent deep learning methods, which fail to fully explore both deep-temporal characterizations in EEGs itself and multi-spectral information in different rhythms, generally ignore the temporal or spectral dependencies in MI-EEG. Also, the lack of effective feature fusion probably leads to redundant or irrelative information and thus fails to achieve the most discriminative features, resulting in the limited MI-EEG decoding performance.

View Article and Find Full Text PDF

Objective: To investigate the efficacy and action mechanism of Shengjing Tablets in the treatment liquefaction.

Methods: We randomly assigned 150 patients with semen non-liquefaction to receive Shengjing Tablets group, n = 100) and vitamin E capsules (control group, n = 50) for 2 courses of 45 days each, followed by observation liquefaction time and other semen parameters.

Results: After the first course, 68 of the patients in the treatment group 20 responded and 12 failed to respond; and after the second course, 84 were cured, 9 responded and 7 failed to respond, effective rate of 93.

View Article and Find Full Text PDF