Common lung diseases are first diagnosed using chest X-rays. Here, we show that a fully automated deep-learning pipeline for the standardization of chest X-ray images, for the visualization of lesions and for disease diagnosis can identify viral pneumonia caused by coronavirus disease 2019 (COVID-19) and assess its severity, and can also discriminate between viral pneumonia caused by COVID-19 and other types of pneumonia. The deep-learning system was developed using a heterogeneous multicentre dataset of 145,202 images, and tested retrospectively and prospectively with thousands of additional images across four patient cohorts and multiple countries.
View Article and Find Full Text PDFObjective: To evaluate the performance of a DNA methylation-based digital droplet polymerase chain reaction (ddPCR) assay to detect aberrant DNA methylation in cell-free DNA (cfDNA) and to determine its application in the detection of hepatocellular carcinoma (HCC).
Methods: The present study recruited patients with liver-related diseases and healthy control subjects. Blood samples were used for the extraction of cfDNA, which was then bisulfite converted and the extent of DNA methylation quantified using a ddPCR platform.
Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2020
The ability to identify a specific type of leukemia using minimally invasive biopsies holds great promise to improve the diagnosis, treatment selection, and prognosis prediction of patients. Using genome-wide methylation profiling and machine learning methods, we investigated the utility of CpG methylation status to differentiate blood from patients with acute lymphocytic leukemia (ALL) or acute myelogenous leukemia (AML) from normal blood. We established a CpG methylation panel that can distinguish ALL and AML blood from normal blood as well as ALL blood from AML blood with high sensitivity and specificity.
View Article and Find Full Text PDFCirculating tumor DNA (ctDNA) has emerged as a useful diagnostic and prognostic biomarker in many cancers. Here, we conducted a study to investigate the potential use of ctDNA methylation markers for the diagnosis and prognostication of colorectal cancer (CRC) and used a prospective cohort to validate their effectiveness in screening patients at high risk of CRC. We first identified CRC-specific methylation signatures by comparing CRC tissues to normal blood leukocytes.
View Article and Find Full Text PDFThe loss-of-function mutation in PARK7/DJ-1 is one of the most common causes of autosomal recessive Parkinson's disease, and patients carrying PARK7 mutations often exhibit both a progressive movement disorder and emotional impairment, such as anxiety. However, the causes of the emotional symptom accompanying PARK7-associated and other forms of Parkinson's disease remain largely unexplored. Using two-photon microscopic Ca2+ imaging in awake PARK7-/- and PARK7+/+ mice, we found that (i) PARK7-/- neurons in the frontal association cortex showed substantially higher circuit activity recorded as spontaneous somatic Ca2+ signals; (ii) both basal and evoked dopamine release remained intact, as determined by both electrochemical dopamine recordings and high performance liquid chromatography in vivo; (iii) D2 receptor expression was significantly decreased in postsynaptic frontal association cortical neurons, and the hyper-neuronal activity were rescued by D2 receptor intervention using either local pharmacology or viral D2 receptor over-expression; and (iv) PARK7-/- mice showed anxiety-like behaviours that were rescued by either local D2 receptor pharmacology or overexpression.
View Article and Find Full Text PDFCo-release of multiple neurotransmitters from secretory vesicles is common in neurons and neuroendocrine cells. However, whether and how the transmitters co-released from a single vesicle are differentially regulated remains unknown. In matrix-containing dense-core vesicles (DCVs) in chromaffin cells, there are two modes of catecholamine (CA) release from a single DCV: quantal and sub-quantal.
View Article and Find Full Text PDFArtificial intelligence (AI)-based methods have emerged as powerful tools to transform medical care. Although machine learning classifiers (MLCs) have already demonstrated strong performance in image-based diagnoses, analysis of diverse and massive electronic health record (EHR) data remains challenging. Here, we show that MLCs can query EHRs in a manner similar to the hypothetico-deductive reasoning used by physicians and unearth associations that previous statistical methods have not found.
View Article and Find Full Text PDFDynamin 1 (dyn1) is required for clathrin-mediated endocytosis in most secretory (neuronal and neuroendocrine) cells. There are two modes of Ca-dependent catecholamine release from single dense-core vesicles: full-quantal (quantal) and subquantal in adrenal chromaffin cells, but their relative occurrences and impacts on total secretion remain unclear. To address this fundamental question in neurotransmission area using both sexes of animals, here we report the following: (1) dyn1-KO increased quantal size (QS, but not vesicle size/content) by ≥250% in dyn1-KO mice; (2) the KO-increased QS was rescued by dyn1 (but not its deficient mutant or dyn2); (3) the ratio of quantal versus subquantal events was increased by KO; (4) following a release event, more protein contents were retained in WT versus KO vesicles; and (5) the fusion pore size () was increased from ≤9 to ≥9 nm by KO.
View Article and Find Full Text PDFKey Points: Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca independent single, large, non-quantal, ATP release occurs.
View Article and Find Full Text PDFThe implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches.
View Article and Find Full Text PDFLoss-of-function mutations in Parkin are the most common causes of autosomal recessive Parkinson's disease (PD). Many putative substrates of parkin have been reported; their pathogenic roles, however, remain obscure due to poor characterization, particularly in vivo. Here, we show that synaptotagmin-11, encoded by a PD-risk gene SYT11, is a physiological substrate of parkin and plays critical roles in mediating parkin-linked neurotoxicity.
View Article and Find Full Text PDFAction potential induces membrane depolarization and triggers intracellular free Ca concentration (Ca)-dependent secretion (CDS) via Ca influx through voltage-gated Ca channels. We report a new type of somatic exocytosis triggered by the action potential per se-Ca-independent but voltage-dependent secretion (CiVDS)-in dorsal root ganglion neurons. Here we uncovered the molecular mechanism of CiVDS, comprising a voltage sensor, fusion machinery, and their linker.
View Article and Find Full Text PDFAn effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive 'liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2017
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples.
View Article and Find Full Text PDFNeuropeptides released from dorsal root ganglion (DRG) neurons play essential roles in the neurotransmission of sensory inputs, including those underlying nociception and pathological pain. Neuropeptides are released from intracellular vesicles through two modes: a partial release mode called "kiss-and-run" (KAR) and a full release mode called "full fusion-like" (FFL). Using total internal reflection fluorescence (TIRF) microscopy, we traced the release of pH-sensitive green fluorescent protein-tagged neuropeptide Y (pHluorin-NPY) from individual dense-core vesicles in the soma and axon of single DRG neurons after Ca influx through either voltage-gated Ca channels (VGCCs) or ligand-gated transient receptor potential vanilloid 1 (TRPV1) channels.
View Article and Find Full Text PDFTransient receptor potential A1 (TRPA1) is a nonselective cation channel implicated in thermosensation and inflammatory pain. In this study, we show that TRPA1 (activated by allyl isothiocyanate, acrolein, and 4-hydroxynonenal) elevates the intracellular Ca concentration ([Ca]) in dorsal root ganglion (DRG) neurons in the presence and absence of extracellular Ca Pharmacological and immunocytochemical analyses revealed the presence of TRPA1 channels both on the plasma membrane and in endolysosomes. Confocal line-scan imaging demonstrated Ca signals elicited from individual endolysosomes ("lysosome Ca sparks") by TRPA1 activation.
View Article and Find Full Text PDFGlial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking.
View Article and Find Full Text PDFNoninvasive prenatal testing (NIPT) using sequencing of fetal cell-free DNA from maternal plasma has enabled accurate prenatal diagnosis of aneuploidy and become increasingly accepted in clinical practice. We investigated whether NIPT using semiconductor sequencing platform (SSP) could reliably detect subchromosomal deletions/duplications in women carrying high-risk fetuses. We first showed that increasing concentration of abnormal DNA and sequencing depth improved detection.
View Article and Find Full Text PDFGlaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2015
Little is known about the interactions between nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Here we report that methacholine (MCh), a selective agonist of mAChRs, inhibited up to 80% of nicotine-induced nAChR currents in sympathetic superior cervical ganglion neurons and adrenal chromaffin cells. The muscarine-induced inhibition (MiI) substantially reduced ACh-induced membrane currents through nAChRs and quantal neurotransmitter release.
View Article and Find Full Text PDFAims/hypothesis: Insulin is a key metabolic regulator in health and diabetes. In pancreatic beta cells, insulin release is regulated by the major second messengers Ca(2+) and cAMP: exocytosis is triggered by Ca(2+) and mediated by the cAMP/protein kinase A (PKA) signalling pathway. However, the causal link between these two processes in primary beta cells remains undefined.
View Article and Find Full Text PDFClassic calcium hypothesis states that depolarization-induced increase in intracellular Ca(2+) concentration ([Ca(2+)]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca(2+), in this calcium hypothesis, serves as a reservoir of Ca(2+) source. Recently we find that extracellular Ca(2+)per se inhibits the [Ca(2+)]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca(2+) or both.
View Article and Find Full Text PDF