ACS Appl Mater Interfaces
July 2024
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics.
View Article and Find Full Text PDFThe healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties.
View Article and Find Full Text PDFAntifatigue fracture performance and high sensing sensitivity are key characteristics for hydrogel sensors used in flexible electronic applications. Herein, inspired by human muscle tissues and epidermal skin tissues, an effective and straightforward strategy is proposed to fabricate hydrogel sensors for detecting human motion with antifatigue fracture performance and high sensing sensitivity. The crystalline regions and orientation along the stretching direction of cellulose nanofiber@carbon nanotube nanohybrids in the hydrogels provide antifatigue fracture performance (the crack does not expand after 2000 stretching cycles, and the fatigue threshold was calculated to be 187 J/m), which protects hydrogels from severe damage during long-term use.
View Article and Find Full Text PDFThe design of hydrogels with switchable adhesion and stable antiswelling property in a wet environment has remained a challenge. Here, we report a biomimetic hydrogel that can adhere and detach on-demand on various material surfaces, which is realized by thermal-triggered switchable shape transformation on hexagonal micropillar patterned hydrogels. The hydrogels are cross-linked by two cross-linkers of poly(ethylene glycol) dimethacrylate and 2-ureidoethyl methacrylate, which guarantee the strong mechanical property and stable antiswelling property in a wet environment.
View Article and Find Full Text PDF