Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aβ and amylin fibrillization.
View Article and Find Full Text PDFThe misfolding and un-natural fibrillation of proteins/peptides are associated with many conformation diseases, such as human islet amyloid polypeptide (hIAPP) in type 2 diabetes (T2D). Inspired by molecular chaperones maintaining protein homeostasis , many polymer-based artificial chaperones were introduced to regulate protein/peptide folding and fibrillation. However, the pure polymer chaperones prefer to agglomerate into large-size micelles in the physiological environment and thus lose their chaperone functions, which greatly restricts the application of polymer-based chaperones.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2022
Revealing the disaggregating mechanism of amyloids fibrils under nanomaterials action is a key issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. Herein a gold nanocluster stabilized by Arg-Cys dipeptide (Au(RC)NCs) was synthesized to investigate its disaggregation activity toward Aβ fibrils by using Thioflavin-T (ThT) fluorescence assay and atomic force microscopy. It was demonstrated that Au(RC)NCs is very effective in disaggregating preformed Aβ fibrils, and characterized by the ultra-low apparent completely disaggregation concentration at the dose of 10 μg·mL.
View Article and Find Full Text PDF