Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFBrain injury remains a major problem in patients suffering cardiac arrest (CA). Disruption of the blood-brain barrier (BBB) is an important factor leading to brain injury. Therapeutic hypothermia is widely accepted to limit neurological impairment.
View Article and Find Full Text PDFLiver hepatocellular carcinoma (LIHC) remains a lethal disease for humans. Immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1 and CTLA4 offered new hopes for advanced-stage patients. Novel immune biomarkers and therapeutic targets are urgently needed.
View Article and Find Full Text PDFTherapeutic hypothermia is effective to attenuate brain ischemia/reperfusion (I/R) injury after cardiac arrest, and multiple mechanisms have been proposed. Dynamin-related protein 1 (Drp1), a large GTPases of dynamin superfamily, predominantly controls mitochondrial fission and is related to IR-induced Cyt C release and apoptosis. However, the effect of therapeutic hypothermia on Drp1 and mitochondrial fission after cardiac arrest remains still unclear.
View Article and Find Full Text PDFBackground: Hydrogen-rich saline can selectively scavenge reactive oxygen species (ROS) and protect brain against ischemia reperfusion (I/R) injury. Endoplasmic reticulum stress (ERS) has been implicated in the pathological process of cerebral ischemia. However, very little is known about the role of hydrogen-rich saline in mediating pathophysiological reactions to ERS after I/R injury caused by cardiac arrest.
View Article and Find Full Text PDF