Publications by authors named "LiangSheng Li"

In this study, we explore the quantum critical phenomena in generalized Aubry-André models, with a particular focus on the scaling behavior at various filling states. Our approach involves using quantum fidelity susceptibility to precisely identify the mobility edges in these systems. Through a finite-size scaling analysis of the fidelity susceptibility, we are able to determine both the correlation-length critical exponent and the dynamical critical exponent at the critical point of the generalized Aubry-André model.

View Article and Find Full Text PDF

Rechargeable aqueous zinc ion batteries with abundant resources and high safety have gained extensive attention in energy storage technology. However, the cycle stability is largely limited by notorious Zn dendrite growth and water-induced interfacial side reactions. Here, a uniform and robust protection layer consisting of metal antimony (Sb) nanoparticles and micrometer-size sheets Zn(OH)SO·5HO (ZHS) is purposely designed to stabilize Zn anode via an in situ chemical reaction strategy.

View Article and Find Full Text PDF

Non-Hermitian quantum metrology, an emerging field at the intersection of quantum estimation and non-Hermitian physics, holds promise for revolutionizing precision measurement. Here, we present a comprehensive investigation of non-Hermitian quantum parameter estimation in the quantum regime, with a special focus on achieving Heisenberg scaling. We introduce a concise expression for the quantum Fisher information (QFI) that applies to general non-Hermitian Hamiltonians, enabling the analysis of estimation precision in these systems.

View Article and Find Full Text PDF

As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently.

View Article and Find Full Text PDF

In this paper, both fundamental SSP modes on a roofed metallic grating and its effective excitation of the bounded SSP mode by an injected electron beam on the structure are numerically examined and investigated in the THz regime. Apart from the bounded SSP mode on the metallic grating with open space, the introduced roofed metallic grating can generate a closed waveguide mode that occupies the dispersion region outside the light line. The closed waveguide mode shifts gradually to a higher frequency band with a decreased gap size, while the bounded SSP mode line becomes lower.

View Article and Find Full Text PDF

It is generally believed that at-Γ bound states in the continuum (BICs) are enclosed by a linearly polarized vortex in momentum space when the structures have mirror (σ) symmetry, in-plane inversion () symmetry, and time reversal symmetry (). Here, we reveal an anomalous situation in which at-Γ BICs can be enclosed by linearly and elliptically polarized far-field even when the σ, , and symmetries are all maintained in non-Bravais lattices, which is radically different from previous cognition. Asymmetric, diatomic structures are designed to elaborate this intriguing phenomenon.

View Article and Find Full Text PDF

Random media pose limitations on the imaging capability of photoelectric detection devices. Currently, imaging techniques employed through random media primarily operate within the laser wavelength range, leaving the imaging potential of terahertz waves unexplored. In this study, we present an approach for terahertz bistatic three-dimensional imaging (TBTCI) of hidden objects through random media.

View Article and Find Full Text PDF

We study the explosive percolation with k-mer random sequential adsorption (RSA) process. We consider both the Achlioptas process (AP) and the inverse Achlioptas process (IAP), in which giant cluster formation is prohibited and accelerated, respectively. By employing finite-size scaling analysis, we confirm that the percolation transitions are continuous, and thus we calculate the percolation threshold and critical exponents.

View Article and Find Full Text PDF

Computational imaging makes it possible to reconstruct hidden objects through random media and around corners, which is of fundamental importance in various fields. Despite recent advances, computational imaging has not been studied in certain types of random scenarios, such as tortuous corridors filled with random media. We refer to this category of complex environment as a 'random corridor', and propose a reduced spatial- and ensemble-speckle intensity correlation (RSESIC) method to image a moving object obscured by a random corridor.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) on the graphene metasurfaces (GSPs) are crucial to develop a series of novel functional devices that can merge the well-established plasmonics and novel nanomaterials. Dispersion theory on GSPs is an important aspect, which can provide a basic understanding of propagating waves and further guidance for potential applications based on graphene metamaterials. In this paper, the dispersion theory and its modal characteristics of GSPs on double-layer graphene metasurfaces consisting of the same upper and lower graphene micro-ribbon arrays deposited on the dielectric medium are presented.

View Article and Find Full Text PDF

The numerical aperture (NA) of a lens determines its focusing resolution capability and the maximum light collection or emission angle. In this Letter, an ultrathin high NA metalens operating in the microwave band is designed and demonstrated both numerically and experimentally. The proposed element is constructed by a multi-layer complementary split ring resonator, which can cover full 2 phase shift simultaneously with high transmission magnitude by varying its radius gradually.

View Article and Find Full Text PDF

The bound states in the continuum (BICs) have been investigated by simulating the optical reflectivity of a tri-layer photonic crystal slab. We found that optical BICs can occur in a class of photonic crystal systems with [Formula: see text], [Formula: see text] or [Formula: see text] rotational symmetries, which are constructed by three identical photonic crystal slabs. By applying the two mode coupled model, we obtain the reflectivity formula to fit the numerical data and evaluate the lifetime of radiation decay.

View Article and Find Full Text PDF

Background: Blood-brain barrier (BBB) disruption and ensuing immune activation are central to the pathogenesis of central nervous system (CNS) inflammatory diseases. However, the influence of BBB permeability on the clinical signs and prognosis of newly diagnosed neuromyelitis optica spectrum disorder (NMOSD) has not been examined. We investigate the relationships between BBB permeability as showed by the albumin quotient (qalb) and clinical features of NMOSD.

View Article and Find Full Text PDF

An ultrathin tunable absorber for the ultrahigh frequency (UHF) band is presented in this paper. The absorber is a single-layer structure based on the topology of a Salisbury screen, in which the conventional resistive layer is replaced by an active frequency-selective surface (AFSS) loaded with resistors and varactors. The reflectivity response of the absorber can be controlled by adjusting the reverse bias voltage for the varactors, which is verified by both simulated and measured results.

View Article and Find Full Text PDF

A novel metal matrix composite based on the NbMoCrTiAl high entropy alloy (HEA) was designed by the in-situ formation method. The microstructure, phase evolution, and compression mechanical properties at room temperature of the composite are investigated in detail. The results confirmed that the composite was primarily composed of body-centered cubic solid solution with a small amount of titanium carbides and alumina.

View Article and Find Full Text PDF

We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs.

View Article and Find Full Text PDF

We experimentally investigate a discharging flux of granular particles through a sieve plate subject to vertical vibrations. The mean mass flux shows a non-monotonic relation with the vibration strength. High-speed photography reveals that two stages, the free flight of the particles' bulk over the plate and the adhesion of the particles' bulk with the plate, alternately appear, where only the adhesion stage contributes to the flow.

View Article and Find Full Text PDF

Periodic segregation behaviors in fine mixtures of copper and alumina particles, including both percolation and eruption stages, are experimentally investigated by varying the ambient air pressure and vibrational acceleration. For the cases with moderate air pressure, the heaping profile of the granular bed keeps symmetrical in the whole periodic segregation. The symmetrical shape of the upper surface of the granular bed in the eruption stage, which resembles a miniature volcanic eruption, could be described by the Mogi model that illuminates the genuine volcanic eruption in the geography.

View Article and Find Full Text PDF

We experimentally investigate segregation behaviors of binary granular mixtures consisting of granular chains and spherical grains with different interstitial media under vertical vibrations. A quantitative criterion is proposed to locate the boundaries between different vibrating phases. The water-immersed granular mixture exhibits two interesting types of segregation behaviors: chain-on-top and sandwich patterns.

View Article and Find Full Text PDF

Using finite-size scaling, we have investigated the percolation phase transitions of evolving random networks under a generalized Achlioptas process (GAP). During this GAP, the edge with a minimum product of two connecting cluster sizes is taken with a probability p from two randomly chosen edges. This model becomes the Erdös-Rényi network at p=0.

View Article and Find Full Text PDF

Statistical behaviors of packing collections of granular chains in a two-dimensional container have been investigated experimentally. On compaction from their own gravity, the longer chains pack into a structure with lower packing density due to the prevalence of backbone loops. The packing of chains can be considered as the jamming of the granular system.

View Article and Find Full Text PDF

A periodic segregation in a binary granular mixture of alumina and copper spheres has been found when the mixture is subjected to vertical vibrations, in which a stable percolation process has been experimentally studied. Measurements reveal that the percolation time of alumina particles through a permeable layer of copper particles increases linearly as the number of alumina particles increases. While the percolation current of alumina particles proves to be independent of the number of alumina particles, it shows a monotonically decreasing relationship with the number of copper particles in the mixture.

View Article and Find Full Text PDF