A novel dual-parameter optical fiber biosensor based on surface plasmon resonance (SPR) for simultaneous measurement of urea and uric acid concentrations is proposed in this paper. Based on the principle of positive and negative electric combination, ZnO nanoparticles is selected as the matrix for immobilizing urease and uricase with selective recognition ability, which can also be used as a sensitizing material to increase the refractive index detection sensitivity of SPR by 22%. Then, Nafion ion exchange membrane was introduced to wrap the urea sensing area to avoid crosstalk caused by the overlap of adjacent sensing areas.
View Article and Find Full Text PDFGlob Health Res Policy
November 2024
Porous tantalum metal is a new orthopedic implant material made of tantalum metal that has been processed by porous treatment. This material has various advantages, including high hardness, good ductility, good biocompatibility, and strong bone integration ability. Porous tantalum metal has performed well in clinical application, demonstrating excellent medium- to long-term curative effects.
View Article and Find Full Text PDFObjective: Many methods of acetabular reconstruction with total hip arthroplasty (THA) for Crowe type II and III adult developmental dysplasia of the hip (DDH) acetabular bone defect have been implemented clinically. However, there was no study comparing the results of integrated acetabular prosthesis (IAP) with bone grafting (BG). This study aims to investigate the efficacy of IAP and BG for acetabular reconstruction in Crowe type II and III DDH.
View Article and Find Full Text PDFAccelerometers are commonly used to measure vibrations for condition monitoring in mechanical and civil structures; however, their high cost and point-based measurement approach present practical limitations. With rapid advancements in computer vision and deep learning, research into tracking the motion of individual pixels with vision cameras has increased. The recently developed CoTracker, a transformer-based model, has demonstrated excellence in motion tracking, yet its performance in measuring structural vibrations has not been fully explored.
View Article and Find Full Text PDFThe joint prosthesis plays a vital role in the outcome of total hip arthroplasty. The key factors that determine the performance of joint prostheses are the materials used and the structural design of the prosthesis. This study aimed to fabricate a porous tantalum (Ta) hip prosthesis using selective laser melting (SLM) technology.
View Article and Find Full Text PDFBackground: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
July 2024
A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability.
View Article and Find Full Text PDFPorous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy.
View Article and Find Full Text PDFIn this paper, a highly sensitive ammonia ( ) sensor based on a polymethyl methacrylate/polyaniline (PMMA/PANI) microwire structure is designed and implemented. First, a micron-sized PMMA microwire was fabricated and connected with two tapered single-mode fibers to form a coupling structure; thus, the Mach-Zehnder (MZ) interference was successfully excited due to the good light conductivity of the PMMA. It was demonstrated that the coupling structure behaved with a high refractive index detection sensitivity of 3044 nm/RIU.
View Article and Find Full Text PDFAs one of the most intriguing nanozymes, the platinum (Pt) nanozyme has attracted tremendous research interest due to its various catalytic activities but its application is still limited by its poor colloidal stability and low affinity to substrates. Here, we design a highly stable Pt@carbon dot (Pt@CD) hybrid nanozyme with enhanced peroxidase (POD)-like activity (specific activity of 1877 U mg). The Pt@CDs catalyze the decomposition of hydrogen peroxide (HO) to produce singlet oxygen and hydroxyl radicals and exhibit high affinity to HO and high specificity to 3,3',5,5'-tetramethyl-benzidine.
View Article and Find Full Text PDFWith continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity.
View Article and Find Full Text PDFDopamine is one of the most significant neurotransmitters and plays an important role in the management of cognitive functions such as learning, memory, and behavior. The disorder of dopamine is associated with many major mental diseases. It is necessary to develop selective methods for the detection of dopamine.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2023
Climate change is expected to increase occupational heat stress, which will lead to diminished work performance and labor losses worldwide. However, sub-regional analyses remain insufficient, especially for countries with a heterogeneous spatial distribution of working populations, industries and climates. Here, we projected heat-induced labor losses in China, by considering local climate simulations, working population characteristics and developing an exposure-response function suitable for Chinese workers.
View Article and Find Full Text PDFThis study aimed to evaluate the biomechanical effectiveness of 3D-printed integrated acetabular prosthesis (IAP) and modular acetabular prosthesis (MAP) in reconstructing the acetabulum for patients with Crowe III developmental dysplasia of the hip (DDH). The results of this study can provide a theoretical foundation for the treatment of Crowe III DDH in total hip arthroplasty (THA). Finite element (FE) analysis models were created to reconstruct Crowe III DDH acetabular defects using IAP and MAP.
View Article and Find Full Text PDFBackground: Despite increasing public concerns about the widespread health effects of climate change, the impacts of ambient temperature on atopic dermatitis (AD) remain poorly understood.
Objectives: We aimed to explore the effect of ambient temperature on AD and to estimate the burdens of AD attributed to extreme temperature.
Methods: Data on outpatients with AD and climate conditions in Chengdu, China were collected.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
March 2023
Objective: To summarize the characteristics and biomechanical research progress of common acetabular reconstruction techniques in patients with Crowe type Ⅱ and Ⅲ developmental dysplasia of the hip (DDH) undergoing total hip arthroplasty (THA), and provide references for selecting appropriate acetabular reconstruction techniques for clinical treatment of Crowe type Ⅱ and Ⅲ DDH.
Methods: The domestic and foreign relevant literature on biomechanics of acetabular reconstruction with Crowe type Ⅱ and Ⅲ DDH was reviewed, and the research progress was summarized.
Results: At present, there are many acetabular reconstruction techniques in Crowe type Ⅱ and Ⅲ DDH patients undergoing THA, with their own characteristics due to structural and biomechanical differences.
To select the most appropriate internal fixation method based on the Pauwels angle, in order to provide a new concept for clinical accurate treatment of femoral neck fractures (FNFs). FNFs models of Pauwels ; ; ; were created respectively. For Pauwels ≤ , 1, 2 and 3 Cannulated Compression Screws (CCS) and Porous Tantalum Screws (PTS) were used to fix the fracture for the models.
View Article and Find Full Text PDFObjective: The treatment of acetabular defects is one of the most difficult challenges of revision of total hip arthroplasty (RTHA), and tantalum is regarded as a promising bone substitute material. This study aims to investigate the effectiveness of 3D printed acetabular augment used in RTHA for the treatment of acetabular bone defect.
Methods: A retrospective analysis of the clinical data of seven patients who had undergone RTHA was carried out using 3D printed acetabular augment from January 2017 to December 2018.
Materials (Basel)
January 2023
As the application of bone scaffolds becomes more and more widespread, the requirements for the high performance of bone scaffolds are also increasing. The stiffness and porosity of porous structures can be adjusted as needed, making them good candidates for repairing damaged bone tissues. However, the development of porous bone structures is limited by traditional manufacturing methods.
View Article and Find Full Text PDFNanozymes with superoxide dismutase (SOD)-like activity have attracted increasing interest due to their ability to scavenge superoxide anion, the origin of most reactive oxygen species in vivo. However, SOD nanozymes reported thus far have yet to approach the activity of natural enzymes. Here, we report a carbon dot (C-dot) SOD nanozyme with a catalytic activity of over 10,000 U/mg, comparable to that of natural enzymes.
View Article and Find Full Text PDF