We have studied the growth of S layers adsorbed on Au(100) with low-energy electron diffraction (LEED), X-ray photoemission spectra (XPS), and scanning tunneling microscope (STM). Three phases of S/Au(100)-(2 × 2), trimer, and c(2 × 4)-are identified; the latter two are not previously reported. A dose of S2 at 300 K transformed Au(100)-(5 × 20) initially into the (2 × 2) phase and formed the c(2 × 4) phase at a saturation coverage.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2010
Decoration of nitrogen vacancies by oxygen atoms has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B K-edge in several boron nitride (BN) structures, including bamboo-like and multi-walled BN nanotubes. Breaking of B-N bonds and formation of nitrogen vacancies under low-energy ion bombardment reduces oxidation resistance of BN structures and promotes an efficient oxygen-healing mechanism, in full agreement with some recent theoretical predictions. The formation of mixed O-B-N and B-O bonds is clearly identified by well-resolved peaks in NEXAFS spectra of excited boron atoms.
View Article and Find Full Text PDFCyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) were employed to study the adsorption and polymerization of the geometric isomers of ethylaniline (EA) on a Au(111) single-crystal electrode in 0.5 M H(2)SO(4). All three isomers, namely o-, m-, and p-EA, were adsorbed in highly ordered structures, identified as Au(111)-(4 x 2 square root(3))rect for m- and p-EA and (4 square root(3) x 4 square root(3))R30 degrees for o-EA, at the onset potentials (approximately 0.
View Article and Find Full Text PDFThe chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH(2)COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH(2)COO, CH(3)COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH(2)COOH on Cu(100) at temperatures higher than 230 K are established to be ICH(2)COOH --> CH(2)COO + H + I, CH(2)COO + H --> CH(3)COO, and CH(3)COO --> CCOH.
View Article and Find Full Text PDFIn situ scanning tunneling microscopy (STM) was used to study the adsorption and polymerization of aniline on Au(111) single-crystal electrode in 0.1 M perchloric acid and 0.1 M benzenesulfonic acids (BSA) containing 30 mM aniline, respectively.
View Article and Find Full Text PDFIn situ scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) have been used to examine the conformation of a monolayer of polyaniline (PAN) molecules produced on a Au(111) single-crystal electrode by anodization at 1.0 V [vs reversible hydrogen electrode (RHE)] in 0.10 M H(2)SO(4) containing 0.
View Article and Find Full Text PDFWe have achieved a growth of highly oriented crystalline pentacene thin films, with preferred a-b in-plane orientation with respect to the rubbing direction of a rubbed polymethylene surface. The polymethylene thin film, generated on a gold surface by gold-catalyzed decomposition of diazomethane, was annealed and gently rubbed in a fixed direction by a flannelette cloth to serve as an alignment layer during the deposition of pentacene molecules. Various surface analysis techniques, including reflection absorption IR spectroscopy (RAIRS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, grazing incidence X-ray diffraction (GIXD), and atomic force microscopy were used to elucidate the structural details of the polymethylene and the pentacene thin films deposited on it.
View Article and Find Full Text PDFX-ray photoelectron spectroscopy has been employed to study the surface intermediates from the thermal decomposition of HSCH2CH2OH on Cu(111) at elevated temperatures. On the basis of the changes of the core-level binding energies of C, O, and S as a function of temperature, it is found that HSCH2CH2OH decomposes sequentially to form -SCH2CH2OH and -SCH2CH2O-. Theoretical calculations based on density functional theory for an unreconstructed one-layer copper surface suggest that -SCH2CH2OH is preferentially bonded at a 3-fold hollow site, with an adsorption energy lower than the cases at bridging and atop sites by 15.
View Article and Find Full Text PDFFluorine-substituted ethyl groups on Cu(111) were generated by thermal scission of the C-I bond in the adsorbed C2F5I. Temperature-programmed reaction spectrometry observed a novel pathway resulting in the evolution of C4F6 above 400 K. Among the various isomers, this product was identified as hexafluro-2-butyne.
View Article and Find Full Text PDF