Publications by authors named "LiangHu Qu"

InfoScan is a novel bioinformatics tool designed for the comprehensive analysis of full-length single-cell RNA sequencing (scRNA-seq) data. It enables the identification of unannotated transcripts and rare cell populations, providing a powerful platform for transcriptome characterization. In this study, InfoScan was applied to glioblastoma multiforme (GBM), identifying a rare "neoplastic-stemness" subpopulation exhibiting cancer stem cell-like features.

View Article and Find Full Text PDF

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses need to attach to specific cell surface receptors to invade host cells, but many of these receptors are still unidentified, making research challenging.
  • This study analyzed known human viruses and their receptors using bioinformatics to understand the characteristics that make some membrane proteins more likely to act as virus receptors.
  • Findings showed that virus receptors generally have higher expression levels and lower sequence conservation than other membrane proteins, with notable variations in expression due to age and significant dysregulation in tumors, leading to the development of GateView, a platform for further virus receptor research.
View Article and Find Full Text PDF

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice.

View Article and Find Full Text PDF

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence.

View Article and Find Full Text PDF

Although over 170 chemical modifications have been identified, their prevalence, mechanism and function remain largely unknown. To enable integrated analysis of diverse RNA modification profiles, we have developed RMBase v3.0 (http://bioinformaticsscience.

View Article and Find Full Text PDF

Post-transcriptional modifications are ubiquitous in both protein-coding and noncoding RNAs (ncRNAs), playing crucial functional roles in diverse biological processes across all kingdoms of life. These RNA modifications can be achieved through two distinct mechanisms: RNA-independent and RNA-guided (also known as RNA-dependent). In the RNA-independent mechanism, modifications are directly introduced onto RNA molecules by enzymes without the involvement of other RNA molecules, while the cellular RNA-guided RNA modification system exists in the form of RNA-protein complexes, wherein one guide RNA collaborates with a set of proteins, including the modifying enzyme.

View Article and Find Full Text PDF

Retrotransposons are highly prevalent in most animals and account for more than 35% of the human genome. However, the prevalence, biogenesis mechanism and function of retrotransposons remain largely unknown. Here, we developed retroSeeker, a novel computational software that identifies novel retrotransposons from pairwise alignments of genomes and decodes their biogenesis, expression, evolution and potential functions.

View Article and Find Full Text PDF
Article Synopsis
  • A kink-turn (K-turn) is a specific RNA structure found across all life domains, leading to the discovery of a new class of RNAs called backward K-turn motifs (bktRNAs) in humans and mice.
  • The study developed a method, RIP-PEN-seq, to identify RNAs that bind to the K-turn protein 15.5K and characterized the unique folding and expression patterns of bktRNAs.
  • One key bktRNA, bktRNA1, plays a vital role in RNA methylation and splicing regulation, showing how these small RNAs contribute to gene expression control by facilitating interactions within the spliceosome.
View Article and Find Full Text PDF

Aims: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown.

View Article and Find Full Text PDF

tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications.

View Article and Find Full Text PDF

Non-coding RNAs (ncRNAs) are emerging as key regulators of various biological processes. Although thousands of ncRNAs have been discovered, the transcriptional mechanisms and networks of the majority of ncRNAs have not been fully investigated. In this study, we updated ChIPBase to version 3.

View Article and Find Full Text PDF

2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq).

View Article and Find Full Text PDF

The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells.

View Article and Find Full Text PDF

Polypeptides encoded by long noncoding RNAs (lncRNAs) are a novel class of functional molecules. However, whether these hidden polypeptides participate in the TP53 pathway and play a significant biological role is still unclear. Here, we discover that TP53-regulated lncRNAs can encode peptides, two of which are functional in various human cell lines.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a pandemic of coronavirus disease 2019 (COVID-19) and is threatening global health. SARS-CoV-2 spreads by air with a transmission rate of up to 15%, but the probability of its maternal-fetal transmission through the placenta is reported to be low at around 3.28%.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers extracted small RNAs from the blood of COVID-19 patients with moderate to severe symptoms to analyze their levels post-infection.
  • A notable increase in tRNA-derived small RNAs (tsRNAs), especially 3'CCA tsRNAs from tRNA-Gly, was observed, correlating with inflammation markers like C-reactive protein (CRP).
  • The study suggests that SARS-CoV-2 infection alters stress-related small RNAs, indicating significant cellular stress in COVID-19 patients, which could inform potential therapies targeting small RNA regulation.
View Article and Find Full Text PDF
Article Synopsis
  • Liver development involves complex interactions between epigenetic regulators, transcription factors, and microRNAs (miRNAs), but understanding miRNA's role in hepatocyte differentiation has been challenging due to limited data.
  • This study utilized high-throughput sequencing (HITS-CLIP) to map significant miRNA-mRNA interactions in mouse liver across various developmental stages, identifying specific miRNAs that play different roles during these stages, particularly miR-122.
  • The research finds that miR-122 regulates the Hippo pathway, crucial for liver size and health, by targeting key pathway regulators, which could deepen our understanding of liver functions and related diseases like inflammation and cancer.
View Article and Find Full Text PDF

tRNA-derived small RNA (tsRNA), a novel type of regulatory small noncoding RNA, plays an important role in physiological and pathological processes. However, the understanding of the functional mechanism of tsRNAs in cells and their role in the occurrence and development of diseases is limited. Here, we integrated multiomics data such as transcriptome, epitranscriptome, and targetome data, and developed novel computer tools to establish tsRFun, a comprehensive platform to facilitate tsRNA research (http://rna.

View Article and Find Full Text PDF

RNA polymerase III (Pol III) transcribes hundreds of non-coding RNA genes (ncRNAs), which involve in a variety of cellular processes. However, the expression, functions, regulatory networks and evolution of these Pol III-transcribed ncRNAs are still largely unknown. In this study, we developed a novel resource, Pol3Base (http://rna.

View Article and Find Full Text PDF

The unfolded protein response (UPR) plays important roles in various cells that have a high demand for protein folding, which are involved in the process of cell differentiation and development. Here, we separately knocked down the three sensors of the UPR in myoblasts and found that PERK knockdown led to a marked transformation in myoblasts from a fusiform to a rounded morphology, which suggests that PERK is required for early myoblast differentiation. Interestingly, knocking down PERK induced reprogramming of C2C12 myoblasts into stem-like cells by altering the miRNA networks associated with differentiation and stemness maintenance, and the PERK-ATF4 signaling pathway transactivated muscle differentiation-associated miRNAs in the early stage of myoblast differentiation.

View Article and Find Full Text PDF

Hypertrophic growth of cardiomyocytes is one of the major compensatory responses in the heart after physiological or pathological stimulation. Protein synthesis enhancement, which is mediated by the translation of messenger RNAs, is one of the main features of cardiomyocyte hypertrophy. Although the transcriptome shift caused by cardiac hypertrophy induced by different stimuli has been extensively investigated, translatome dynamics in this cellular process has been less studied.

View Article and Find Full Text PDF

Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear.

View Article and Find Full Text PDF