Publications by authors named "Liang-Yun Hu"

Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7).

View Article and Find Full Text PDF

Radio-sensitization is highly desired to reduce side-effect of the harsh dose of radiation therapy (RT), for which nanoparticles with high atomic number elements provide a promising tool. However, insufficient knowledge on utilizing the interaction between nanoparticles and cancerous cells hampers the improvement of therapeutic outcome. We herein employed NaGdF:Yb,Er nano-crystals as the sensitizer, and modified them with a tumor targeting agent and a mitochondria targeting moiety, separately and jointly, to achieve varied extent of mitochondrial accumulation.

View Article and Find Full Text PDF

XL388 is a highly efficient and orally-available ATP-competitive PI3K-mTOR dual inhibitor. Its activity against glioma cells was studied here. In established and primary human glioma cells, XL388 potently inhibited cell survival and proliferation as well as cell migration, invasion and cell cycle progression.

View Article and Find Full Text PDF

Long non-coding RNA THOR (Lnc-THOR) binds to IGF2BP1, essential for its function. We here show that Lnc-THOR is expressed in human glioma tissues and cells. Its expression is extremely low or even undetected in normal brain tissues, as well as in human neuronal cells and astrocytes.

View Article and Find Full Text PDF

Melanoma antigen A6 (MAGEA6)/TRIM28 complex is a cancer-specific ubiquitin ligase, which degradates tumor suppressor protein AMP-activated protein kinase (AMPK). We show that MAGEA6 is uniquely expressed in human glioma tissues and cells, which is correlated with AMPKα1 downregulation. It is yet absent in normal brain tissues and human astrocytes/neuronal cells.

View Article and Find Full Text PDF