Nanog, a core pluripotency factor, is required for stabilizing pluripotency of inner cell mass (ICM) and embryonic stem cells (ESCs), and survival of primordial germ cells in mice. Here, we have addressed function and regulation of Nanog in epiblasts of postimplantation mouse embryos by conditional knockdown (KD), chromatin immunoprecipitation (ChIP) using in vivo epiblasts, and protein interaction with the Nanog promoter in vitro. Differentiation of Nanog-KD epiblasts demonstrated requirement for Nanog in stabilization of pluripotency.
View Article and Find Full Text PDFBurns, chronic wounds, osteoarthritis, and uveitis are examples of conditions characterized by local, intense inflammatory responses that can impede healing or even further tissue degradation. The most powerful anti-inflammatory drugs available are often administered systemically, but these carry significant side effects and are not compatible for patients that have underlying complications associated with their condition. Conjugation of monoclonal antibodies that neutralize pro-inflammatory cytokines to high molecular weight hydrophilic polymers has been shown to be an effective strategy for local control of inflammation.
View Article and Find Full Text PDFBiomaterials capable of neutralizing specific cytokines could form the basis for treating a broad range of conditions characterized by intense, local inflammation. Severe burns, spanning partial- to full-thickness of the dermis, can result in complications due to acute inflammation that contributes to burn progression, and early mediation may be a key factor in rescuing thermally injured tissue from secondary necrosis to improve healing outcomes. In this work, we examined the effects on burn progression and influence on the inflammatory microenvironment of topical application of anti-tumor necrosis factor-α (anti-TNF-α) alone, mixed with hyaluronic acid (HA) or conjugated to HA.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones.
View Article and Find Full Text PDFIn this study, we explored whether topical application of antibodies targeting tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6) conjugated to hyaluronic acid (HA) could reduce the extension of necrosis by modulating inflammation locally in a partial-thickness rat burn model. Partial-thickness to deep partial-thickness burn injuries present significant challenges in healing, as these burns often progress following the initial thermal insult, resulting in necrotic expansion and increased likelihood of secondary complications. Necrotic expansion is driven by a microenvironment with elevated levels of pro-inflammatory mediators, and local neutralization of these using antibody conjugates could reduce burn progression.
View Article and Find Full Text PDFThe discovery of induced pluripotent stem (iPS) cells has broadened the promises of regenerative medicine through the generation of syngeneic replacement cells or tissues via the differentiation of patient-specific iPS cells. To apply iPS cell-mediated therapy to patients with genetic disorders, however, genome-editing technologies with high efficiency and specificity are needed. Recently, several targeted genome-editing strategies mediated by zinc finger nuclease and transcription activator-like effector nuclease have been applied to human and mouse iPS cells.
View Article and Find Full Text PDFCytokine-neutralizing antibodies are used in treating a broad range of inflammatory conditions. We demonstrate that monoclonal antibodies against interleukin-1β and tumor necrosis factor-α were still active when conjugated to high molecular weight polysaccharides. These polysaccharides are hydrophilic, but their size makes them unable to circulate in the bloodstream when delivered to tissues, opening up the possibility of localized treatment of inflammatory conditions.
View Article and Find Full Text PDFConstructs composed of cytokine-neutralizing antibodies conjugated to high-molecular-weight hyaluronic acid have been shown to be effective at controlling inflammatory responses in vivo. A critical question in the development of this new class of biomaterial is whether crosslinked conjugates have similar anti-inflammatory effects, which would open up a broad range of tissue engineering applications in which the material would have intrinsic inflammation-controlling function. To test this, high-molecular-weight hyaluronic acid was conjugated with monoclonal antibodies to the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in two forms of the material: viscous, non-crosslinked polymer-antibody conjugates and crosslinked, elastomeric polymer-antibody conjugates.
View Article and Find Full Text PDFWound healing represents a highly regulated, orchestrated response of cells recruited to sites of injury. High molecular weight hyaluronic acid was conjugated with monoclonal antibodies to the cytokine interleukin-1beta to create a matrix-forming polymer capable of modifying healing. Using gel electrophoresis and fluorescence immunosorbent assays, we determined a degree of antibody functionalization per hyaluronic acid chain of 13.
View Article and Find Full Text PDF