Publications by authors named "Liang-Tien Chia"

Multimedia applications such as image or video retrieval, copy detection, and so forth can benefit from saliency detection, which is essentially a method to identify areas in images and videos that capture the attention of the human visual system. In this paper, we propose a new spatio-temporal saliency detection framework on the basis of regularized feature reconstruction. Specifically, for video saliency detection, both the temporal and spatial saliency detection are considered.

View Article and Find Full Text PDF

Recent research has shown the initial success of sparse coding (Sc) in solving many computer vision tasks. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR). Essentially, KSR is a sparse coding technique in a high dimensional feature space mapped by an implicit mapping function.

View Article and Find Full Text PDF

We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same.

View Article and Find Full Text PDF

Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework.

View Article and Find Full Text PDF