Anammox process offers reduced operational cost and energy requirement compared to nitrification-denitrification methods due to lower biomass generation and no need for external carbon sources and aeration. High ammonia concetration and low biodegradable anaerobic digester of swaine wastewater provided an advantage for the growth of anammox microorangism. An anoxic/oxic (A/O) SBR and an anammox SBR were implemented parallelly to treat the same swine wastewater with partial nitrification/denitrification and partial nitrification/anammox process, respectively, and to compare their nitrogen removal efficiency.
View Article and Find Full Text PDFThe study evaluated the most efficient biological nitrogen removal (BNR) process in four full-scale municipal wastewater treatment plants (WWTPs) by using BioWin, a simulation software based on the activated sludge model (ASM). A series of experiments were conducted to determine the kinetic and stoichiometric parameters for the ASM. Results indicated that autotrophic maximum specific growth rates in the studied WWTPs were generally higher compared to previous findings, likely due to their low COD/N ratios, emphasizing the importance of local parameterization.
View Article and Find Full Text PDFThis study investigated the performance of the full-scale unit over a two-year period to enhance nitrification efficiency and provide operational strategies. Results indicated that raw water quality from Donggan River was notably influenced by seasonal variations, particularly during dry and wet seasons, impacting the nitrification efficiency of the biological pretreatment process. Factors such as influent concentrations of ammonia and total Kjeldahl nitrogen were found to have significant effects on nitrification, with temperature and conductivity also showing correlations.
View Article and Find Full Text PDFManufacturing processes in semiconductor and photonics industries involve the use of a significant amount of organic solvents. Recycle and reuse of these solvents produce distillate residues and require treatment before being discharged. This study aimed to evaluate the performance of the biological treatment system in a full-scale wastewater treatment plant that treats wastewater containing distillate residues from the recycling of electronic chemicals.
View Article and Find Full Text PDFIn this study, a mixed-cultural metabolic network for anaerobic digestion that included the concept of a "universal bacterium" was constructed, and metabolic flux analysis (MFA) applying this network was conducted to evaluate the flow of electrons and materials during H fermentation under various conditions. The MFA results from two H fermenters feeding glucose with (GP) or without (GA) the addition of peptone suggest that hydraulic retention time (HRT) presents a significant impact on hydrogen production, and the reversed trends could be observed at HRTs below and above 4 h. From the MFA results of lactate/acetate-fed H fermenter, the highest flux of H production is associated with more significant acetate consumption and the following pathways toward the anaplerotic reactions cycle that produces NADH.
View Article and Find Full Text PDFTo study the fate of veterinary antibiotics released from swine wastewater treatment plants (SWTP), 10 antibiotics were investigated in each unit of a local SWTP periodically. Over a 14-month period of field investigation into target antibiotics, it was confirmed that tetracycline, chlortetracycline, sulfathiazole, and lincomycin were used in this SWTP, with their presence observed in raw manure. Most of these antibiotics could be effectively treated by aerobic activated sludge, except for lincomycin, which was still detected in the effluent, with a maximum concentration of 1506 μg/L.
View Article and Find Full Text PDFLignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized.
View Article and Find Full Text PDFThis study investigated biological treatment for two kinds of volatile organic compounds (VOCs)-containing wastewaters collected from wet scrubbers in a semiconductor industry. Batch test results indicated that one wastewater containing highly volatile organic compounds was not suitable for aerated treatment conditions while the other containing much lower volatile organic compounds was suitable for aerobic treatment. Accordingly, two moving bed bioreactors, by adding commercial biocarrier BioNET, were operated under aerobic and anoxic conditions for treating low volatility wastewater (LVW) and high volatility wastewater (HVW), respectively.
View Article and Find Full Text PDFSteel slag is a secondary product from steelmaking process through alkaline oxygen furnace or electric arc furnace (EAF). The disposal of steel slag has become a thorny environmental protection issue, and it is mainly used as unbound aggregates, e.g.
View Article and Find Full Text PDFThis study aimed to evaluate the effects of copper on N-methylformamide (NMF)- and methyl diglycol (MDG)-containing wastewater treatment using batch experiments and a lab-scale anoxic-oxic (A/O) sequencing batch reactor (SBR). Batch experimental results indicated that aerobic degradation of NMF followed Monod-type kinetics. Copper inhibition on nitrification also followed Monod-type inhibition kinetics with copper-to-biomass ratio instead of copper concentration.
View Article and Find Full Text PDFTetramethylammonium hydroxide (TMAH) was often used as developer in the high-tech industries. Information regarding biological treatment of high TMAH-containing wastewater is limited. This study investigated aerobic degradation of high TMAH, its impacts on nitrification, and microbial community in a sequencing batch reactor (SBR).
View Article and Find Full Text PDFSwine wastewater is categorized as one of the agricultural wastewater with high contents of organics and nutrients including nitrogen and phosphorus, which may lead to eutrophication in the environment. Insufficient technologies to remove those nutrients could lead to environmental problems after discharge. Several physical and chemical methods have been applied to treat the swine wastewater, but biological treatments are considered as the promising methods due to the cost effectiveness and performance efficiency along with the production of valuable products and bioenergies.
View Article and Find Full Text PDFThe purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP).
View Article and Find Full Text PDFThe bioremediation efficiency of petroleum hydrocarbons in natural soil-water systems is regulated by active microbial populations and other system parameters. Relevant factors include the transfer rate of petroleum contaminants from a medium into microorganisms, the partitioning behavior of contaminants from water into the soil organic matter (SOM), and the influence of the dissolved organic matter (DOM) on the contaminant level in water. The objectives of this study was aimed to determine the correlation among bioavailability of petroleum hydrocarbons, SOM content, and DOM level in soil-water systems.
View Article and Find Full Text PDFThis study evaluated biological treatment of dimethyl sulfoxide (DMSO)-containing wastewater from semiconductor industry under aerobic and anaerobic conditions. DMSO concentration as higher as 1.5 g/L did not inhibit DMSO degradation efficiency in aerobic membrane bioreactor (MBR), while specific DMSO degradation rate at different initial DMSO-to-biomass (S/X) ratios from batch tests seemed to follow the Haldane-type kinetics.
View Article and Find Full Text PDFTrichloroethylene (TCE) is one of the most ubiquitous halogenated organic compounds of concerns of carcinogens in groundwater in Taiwan. Bioremediation has been recognized as a cost-effective approach in reducing TCE concentration. Five pilot-scale wells were constructed to monitor TCE concentrations in contaminated groundwater.
View Article and Find Full Text PDFThis study evaluated the methanogens responsible for methanogenic degradation of tetramethylammonium hydroxide (TMAH) in a continuous flow bioreactor. The enriched methanogens attained an estimated maximum specific TMAH degradation rate and half-saturation constant of 39.5 mg TMAH/gVSS/h and 820 mg/L, following the Monod-type kinetic expression for methanogenic TMAH degradation.
View Article and Find Full Text PDFA pilot-scale single-stage anaerobic fluidized membrane bioreactor (AFMBR) was firstly used in this study to treat cold-rolling emulsion wastewater from steel industry. It was continuously operated for 302 days with influent COD concentration of 860-1120 mg/L. Under a hydraulic retention time of 1.
View Article and Find Full Text PDFThis study investigated the acetate production from gas mixture of hydrogen (H) and carbon dioxide (CO) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture.
View Article and Find Full Text PDFThis study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day.
View Article and Find Full Text PDFAlgae-based biodiesel is considered a promising alternative energy; therefore, the treatment of microalgae residues would be necessary. Anaerobic processes can be used for treating oil-extracted microalgae residues (OMR) and at the same time for recovering bioenergy. In this study, anaerobic batch experiments were conducted to evaluate the potential of recovering bioenergy, in the forms of butanol, H2, or CH4, from pretreated OMR.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2016
The relationship of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in sediment, water, and fish was studied for 55 fish farms near a contaminated site in Tainan, Taiwan. Samples were collected from the farms and analyzed for seventeen 2,3,7,8-substituted PCDD/Fs congeners. High correlations were found between PCDD/Fs in water and sediment in regard to both concentration and toxicity (R(2) = 0.
View Article and Find Full Text PDFThe aim of this study was to select a potential microalgal strain for lipid production and to examine the suitability of anaerobically treated piggery wastewater as a nutrient source for production of lipid-rich biomass with the selected microalga. Biomass and lipid productivity of three microalgal strains (Chlorella sorokiniana CY1, Chlorella vulgaris CY5 and Chlamydomonas sp. JSC-04) were compared by using different media, nitrogen sources, and nitrogen concentrations.
View Article and Find Full Text PDFThis study conducted batch experiments to evaluate the potential of butanol production from microalgae biodiesel residues by Clostridium acetobutylicum. The results indicated that with 90 g/L of glucose as the sole substrate the highest butanol yield of 0.2 g/g-glucose was found, but the addition of butyrate significantly enhanced the butanol yield.
View Article and Find Full Text PDFThis study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH.
View Article and Find Full Text PDF