Publications by authors named "Liang-Liang Wan"

We theoretically predict the squeezing-induced point-gap topology together with a symmetry-protected Z_{2} "skin effect" in a one-dimensional (1D) quadratic-bosonic system. Protected by a time-reversal symmetry, such a topology is associated with a novel Z_{2} invariant (similar to quantum spin-Hall insulators), which is fully capable of characterizing the occurrence of the Z_{2} skin effect. Focusing on zero energy, the parameter regime of this skin effect in the phase diagram just corresponds to a "real- and point-gap coexisting topological phase.

View Article and Find Full Text PDF

We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir.

View Article and Find Full Text PDF

The flat band localization, as an important phenomenon in solid state physics, is fundamentally interesting in the exploration of exotic ground property of many-body system. Here we demonstrate the appearance of a flat band in a general bipartite optomechanical lattice, which could have one or two dimensional framework. Physically, it is induced by the hybrid interference between the photon and phonon modes in optomechanical lattice, which is quite different from the destructive interference resulted from the special geometry structure in the normal lattice (e.

View Article and Find Full Text PDF

The Lieb lattice featuring flat band is not only important in strongly-correlated many-body physics, but also can be utilized to inspire new quantum devices. Here we propose an optomechanical Lieb lattice, where the flat-band physics of photon-phonon polaritons is demonstrated. The tunability of the band structure of the optomechanical arrays allows one to obtain an approximate photon or phonon flat band as well as the transition between them.

View Article and Find Full Text PDF