Publications by authors named "Liang Zhiming"

ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode-electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid-solid or solid-liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure.

View Article and Find Full Text PDF

Objective: Multiple system atrophy (MSA) is a rare and fatal adult-onset neurodegenerative disease with multiple clinical and pathological variants. The etiology of MSA remains uncertain. Orthostatic hypotension (OH) is the main characteristic of MSA.

View Article and Find Full Text PDF

Background: Based on understanding of placental pathological features and safe medication in pregnancy-associated malaria (PAM), establishment of a stable pregnant mouse infection model with Plasmodium was urgently needed.

Methods: ICR mice with vaginal plugs detected were randomly divided into post-pregnancy infection (Malaria) and uninfected pregnancy (Malaria) cohorts. Age-matched mice that had not been mated were infected as pre-pregnancy infection group (Virgin control), which were subsequently mated with ICR males.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cells, a therapeutic agent for solid tumors, are not completely effective due to a lack of infiltration of T cells into the tumor site and immunity caused by Programmed Death Receptor 1(PD1). Here, an epidermal growth factor receptor (EGFR) CAR-T cell was engineered to express the chemokine receptor CCR6 and secrete PD1 blocking Single-chain antibody fragment (scFv) E27 to enhance their anti-tumor effects. The findings showed that CCR6 enhanced the migration of EGFR CAR-E27-CCR6 T cells in vitro by the Transwell migration assay.

View Article and Find Full Text PDF

HIV-specific chimeric antigen receptor (CAR) T-cells have been developed to target HIV-1 infected CD4 T-cells that express HIV Env proteins. However, T cell exhaustion and the patient-specific autologous paradigm of CAR-T cell hurdled clinical applications. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells and a 3BNC117-E27 (3BE) CAR construct that enabled the expression of programmed cell death protein (PD-1) -blocking scFv E27 and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV Env.

View Article and Find Full Text PDF

The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients' sera and convalescent sera against all VOCs, including B.1.

View Article and Find Full Text PDF

Numbers of HIV latency reversal agents (LRAs) have been tested in clinical trials, but with limited effect. EK-16A is an ingenol derivative that isolated from . Our prior studies have suggested that it could reactivate latent HIV and meanwhile inhibit HIV infection .

View Article and Find Full Text PDF

The CRISPR-Cas9 system is increasingly being used as a gene editing therapeutic technique in complex diseases but concerns remain regarding the clinical risks of Cas9 immunogenicity. In this study, we detected antibodies against Cas9 (SaCas9) and anti-SaCas9 T cells in 4.8% and 70% of Chinese donors, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The biology major has seen rapid growth, becoming essential in agricultural colleges, though many educators lack practical experience.
  • Recent reforms, specifically the "Industrial Innovation and Entrepreneurship Talent Cultivation" (IIETC) model, aim to enhance teaching effectiveness, but its impact on biology students was previously unclear.
  • Research indicates that the IIETC model significantly boosts academic performance and student satisfaction compared to traditional methods, encouraging greater engagement and success among biology majors.
View Article and Find Full Text PDF

To study the effects of graphene oxide (GO) size on the curing kinetics of epoxy resin (EP), two kinds of GO were selected and characterized by Fourier transform infrared spectrometry (FT-IR), FT-Raman spectrometry (FTIR-Raman), thermo gravimetric analysis (TGA), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that the two kinds of GO had similar chemical structures but different sizes-the average particle size of GO-A was 190.1 nm and that of GO-B was 1510 nm, and GO-A has more oxidizing groups on its surface.

View Article and Find Full Text PDF

. This study assessed the occupational health risks of work group exposure to trichloroethylene (TCE) in the electroplating and electronics industries in China. .

View Article and Find Full Text PDF

Selenomethionine (SeMet) is known to alleviate ischemia-reperfusion (I/R) injury. However, its details of action have not been thoroughly elucidated in mice with intestinal I/R injury. In this study, intestinal I/R injury mice models were established, and ELISAs were performed to determine the levels of redox factors, including glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA), in mice intestinal tissues.

View Article and Find Full Text PDF

Adoptive cellular immunotherapy therapy using broadly neutralizing antibody-based chimeric antigen receptor-T cells (bNAb-based CAR-T) has shown great potency and safety for the functional cure of HIV. The efficacy of bNAb-based CAR-T cells could be compromised by adaptive resistance during HIV chronic infection according to the phenomenon that cellular exhaustion was observed in endogenous cytotoxic T-lymphocytes (CTLs) along with upregulated expression of PD-1. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a 3BNC117-DNR CAR (3BD CAR) construct that enables the expression of PD-1 dominant negative receptor (DNR) and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV envelope glycoprotein (Env).

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) cannot be completely eliminated because of existence of the latent HIV-1 reservoir. However, the facts of HIV-1 latency, including its establishment and maintenance, are incomplete. FKBP3, encoded by the gene, belongs to the immunophilin family of proteins and is involved in immunoregulation and such cellular processes as protein folding.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy faces a number of challenges for the treatment of non-small-cell lung carcinoma (NSCLC), and efficient migration of circulating CAR T cells plays an important role in anti-tumor activity. In this study, a CAR specific for tumor antigen mesothelin (Msln-CAR) was co-expressed with cell chemokine receptors CCR2b or CCR4. Findings showed that CCR2b and CCR4 enhanced the migration of Msln-CAR T cell by transwell assay.

View Article and Find Full Text PDF

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl or NOBF increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers.

View Article and Find Full Text PDF

The latent HIV-1 reservoir is a major barrier to viral eradication. However, our understanding of how HIV-1 establishes latency is incomplete. Here, by performing a genome-wide CRISPR-Cas9 knockout library screen, we identify phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein (RKIP), as a novel gene inducing HIV latency.

View Article and Find Full Text PDF

The first prototype of a rechargeable magnesium (Mg) battery demonstrated two decades ago sparked tremendous interest in the electrochemical community due to their potential low cost, high volumetric energy density. However, the development of rechargeable Mg batteries has been hampered by the incompatibility between the Mg-metal anode and conventional carbonate electrolytes. Research has focused on electrolytes that are thermodynamically stable against reduction at the expense of low oxidation potential at the cathode side.

View Article and Find Full Text PDF

Motivated by the oleophobic and electron-withdrawing nature of perfluorocarbons, we explore the effect of a trifluoromethyl coating on lead sulfide quantum dots (PbS QDs) in thin film transistor (TFT) geometry. The low surface energy conferred by the oleophobic perfluorocarbons creates QDs packed in a primitive cubic lattice with long range order, as confirmed by grazing incidence small angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Hole mobilities as high as 0.

View Article and Find Full Text PDF

Photon upconversion employing semiconductor nanocrystals (NCs) makes use of their large and tunable absorption to harvest light in the near-infrared (NIR) wavelengths as well as their small gap between singlet and triplet excited states to reduce energy losses. Here, we report the highest QY (11.8%) thus far for the conversion of NIR to yellow photons by improving the quality of the PbS NC.

View Article and Find Full Text PDF

Organometal halide perovskite photovoltaics typically contain both electron and hole transport layers, both of which influence charge extraction and recombination. The ionization energy (IE) of the hole transport layer (HTL) is one important material property that will influence the open-circuit voltage, fill factor, and short-circuit current. Herein, we introduce a new series of triarylaminoethynylsilanes with adjustable IEs as efficient HTL materials for methylammonium lead iodide (MAPbI) perovskite based photovoltaics.

View Article and Find Full Text PDF

Parity-time (PT) symmetric structures present the unidirectional invisibility at the spontaneous PT-symmetry breaking point. In this paper, we propose a PT-symmetric circuit consisting of a resistor and a microwave tunnel diode (TD) which represent the attenuation and amplification, respectively. Based on the scattering matrix method, the circuit can exhibit an ideal unidirectional performance at the spontaneous PT-symmetry breaking point by tuning the transmission lines between the lumped elements.

View Article and Find Full Text PDF

Silver nanowires are attractive components for a number of materials and applications, including silver nanowire (AgNW)-polymer composites, electrically conductive coatings, and transparent electrodes. In this manuscript, the ability of thiols with hydrophobic to ionic end groups to bind to AgNW surfaces is investigated, followed by how the polarity of the surface modifying thiol influences the morphological and electrical properties of both AgNW/PEDOT:PSS blend films and pure AgNW networks. Utilizing surface modification of AgNWs with sodium 3-mercapto-1-propanesulfonate (MPS), morphologically homogeneous AgNW/PEDOT:PSS thin films with an order of magnitude lower sheet resistance at similar transmittance values than unmodified AgNWs are obtained with a one-step processing method.

View Article and Find Full Text PDF