Publications by authors named "Liang L Wu"

Background: The biological function of YKL-40 is not well determined in different inflammatory and autoimmune diseases; however, some data highlighted its possible connection with disease activity.

Aim: We investigated the diagnostic utility of serum YKL-40 in patients with SLE and examined its correlation with disease activity. Additionally, we examined any differences in serum YKL-40 levels between juvenile and adult SLE patients.

View Article and Find Full Text PDF

This quantitative study examined student participation in an introductory project-based engineering course offered in fully face-to-face and hybrid course modes ( = 160). This course attempted to counteract trends of decreased student motivation and high attrition rates among engineering majors. Mixed-design analysis of variance examined differences in motivational constructs including student self-efficacy, effort regulation, and interest in engineering, as well as engineering skills throughout the course and across instructional modes.

View Article and Find Full Text PDF

Preparation of raw, untreated biological samples remains a major challenge in microfluidics. We present a novel microfluidic device based on the integration of printed circuit boards and an isotachophoresis assay for sample preparation of nucleic acids from biological samples. The device has integrated resistive heaters and temperature sensors as well as a 70 μm × 300 μm × 3.

View Article and Find Full Text PDF

We introduce a flow regulating technology that uses trapped air bubbles in a hydrophobic microfluidic channel. We present basic designs for flow regulators and flow valves using trapped air. Experiments have successfully demonstrated the capability of this technique for delivering constant and varying flow rate, and for on-off valving.

View Article and Find Full Text PDF

Microfluidic droplet systems have shown great promise in high throughput chemical assays to minimize chemical consumption and increase process efficiency. We report a droplet system that forms nanovolume drops under static conditions. The programmability of drop sizes is determined by geometric configurations and surface tension, and not particularly sensitive to flow rates.

View Article and Find Full Text PDF