Plant bioactive metabolites such as flavonoids are usually present in glycosylated forms by the attachment of various sugar groups. In this study, a catalytically flexible and reversible glycosyltransferase (HtUGT72AS1) was cloned and characterized from . HtUGT72AS1 could directly accept six sugar donors (UDP-glucose/-arabinose/-galactose/-xylose/--acetylglucosamine/-rhamnose) to catalyze the 3-OH glycosylation of flavonols.
View Article and Find Full Text PDFThe glycosyltransferase OleD variant as a catalyst for the glycosylation of four pairs of epimers of cardiotonic steroids (CTS) are assessed. The results of this study demonstrated that the OleD-catalyze glycosylation of CTS is significantly influenced by the configuration at C-3 and the A/B fusion mode. 3β-OH and A/B ring fusion are favoured by OleD (ASP).
View Article and Find Full Text PDFCardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na(+), K(+)-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3β-hydroxy bufalin over the 3α-isomer, yet replacing the 3β-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency.
View Article and Find Full Text PDFMSCs have become a popular target for developing end-stage liver therapies. In this study, two models of bone marrow chimeric mice were used to construct the liver failure models. Then it was found that MSCs can transdifferentiate into hepatocyte-like cells and these hepatocyte-like cells can significantly express albumin.
View Article and Find Full Text PDFObjective: To determine whether intestinal epithelial cells have a receptor for intestinal trefoil factor and characterize receptor-ligand binding kinetics.
Methods: Radioligand binding assays were performed to characterize the binding kinetics between [(125)I]-labeled ITF and IEC-6, HT-29, Caco2 and HaCaT cells. The K d, Bmax and other kinetic variables describing the interaction between ITF and its potential receptors were determined.
Background: Interactions between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 are crucial for the recruitment of mesenchymal stem cells (MSCs) from bone marrow (BM) reservoirs to damaged tissues for repair during alarm situations. MicroRNAs are differentially expressed in stem cell niches, suggesting a specialized role in stem cell regulation. Here, we gain insight into the molecular mechanisms involved in regulating SDF-1α.
View Article and Find Full Text PDFGlutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats.
View Article and Find Full Text PDFMitochondrial damage plays an important role in mediating postburn cardiac injury. To elucidate the pivotal mitochondrial proteins and pathways underlying postburn cardiac injury, mitochondria were purified from control and postburn rat hearts. 2-dimensional gel electrophoresis (2-DE) and HPLC-chip-MS/MS analyses revealed 9 differentially expressed proteins, 3 of which were further validated by Western blotting.
View Article and Find Full Text PDFBackground: Glycine has been shown to participate in protection from hypoxia/reoxygenation injury. However, the cardioprotective effect of glycine after burn remains unclear. This study aimed to explore the protective effect of glycine on myocardial damage in severely burned rats.
View Article and Find Full Text PDFInt J Clin Exp Pathol
February 2013
Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2012
The SDF-1/CXCR4 axis is critical for inducing stem cell mobilization into the circulation, for homing stem cells to the site of injury, and for stem cell participation in the regeneration of liver tissue. In this study, we have gained insight into the molecular mechanisms involved in regulating the expression of SDF-1α by miRNAs. Using microarray and bioinformatics approaches, we identified six miRNAs with differential expression in damaged liver tissue (21 days after liver injury) compared to normal C57BL/6 murine liver tissue and further confirmed these observations by qPCR; miR-23a, which was identified by other researchers, was also included for comparative purposes.
View Article and Find Full Text PDFBackground: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α.
View Article and Find Full Text PDFPeptide vaccination for cancer immunotherapy requires an ideal immune response induced by epitope peptides derived from tumor-associated antigens (TAA). Heparanase is broadly expressed in various advanced tumors. Accumulating evidence suggests that heparanase can serve as a universal TAA for tumor immunotherapy.
View Article and Find Full Text PDFAdvances in medical imaging techniques, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography, have made great progress in detecting tumors. However, these imaging techniques are unable to differentiate malignant tumors from benign ones. Recently developed optical imaging of tumors in small animals provides a useful method to distinguish malignant tumors from their surrounding normal tissues.
View Article and Find Full Text PDFHeparanase is expressed in almost all advanced tumors, and therefore it may serve as a potential target for tumor therapy. Our previous study has shown that heparanase can serve as a potential universal tumor-associated antigen (TAA) for the immunotherapy of advanced tumors. Further study demonstrated that the HLA-A*0201-restricted Cytotoxic T lymphocytes (CTL) epitopes Hpa525 (PAFSYSFFV), Hpa277 (KMLKSFLKA) and Hpa405 (WLSLLFKKL) from human heparanase could induce a potent anti-tumor immune response in vitro.
View Article and Find Full Text PDFIn both cardiomyocytes and HeLa cells, hypoxia (1% O(2)) quickly leads to microtubule disruption, but little is known about how microtubule dynamics change during the early stages of hypoxia. We demonstrate that microtubule associated protein 4 (MAP4) phosphorylation increases while oncoprotein 18/stathmin (Op18) phosphorylation decreases after hypoxia, but their protein levels do not change. p38/MAPK activity increases quickly after hypoxia concomitant with MAP4 phosphorylation, and the activated p38/MAPK signaling leads to MAP4 phosphorylation and to Op18 dephosphorylation, both of which induce microtubule disruption.
View Article and Find Full Text PDFActivation of endothelial cells in humans is an early event in the response to hypoxia that may contribute to the endothelium's endogenous capacity to reduce tissue injury. To better understand the mechanism underlying this process, we utilized Long Serial Analysis of Gene Expression to study the transcriptome of human vein umbilical endothelial cells (EA.hy926) shortly after the induction of hypoxia.
View Article and Find Full Text PDFDendritic cells (DCs) transfected with recombinant, replication-defective adenovirus (Ad) vectors encoding the human telomerase reverse transcriptase (hTERT) are potent inducers of cytotoxic T lymphocytes (CTLs) and anti-tumour immunity. However, previous studies have mostly been in vitro. In this study, we sought to determine whether DCs transfected with hTERT (DC/Ad-hTERT) could elicit a potent anti-tumour immunogenic response in vivo.
View Article and Find Full Text PDFPeptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa) is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in the protein of human Hpa.
View Article and Find Full Text PDFTelomerase activity is detected in more than 90% of examined tumors but not in most normal somatic cells. Among three subunits of human telomerase, human telomerase reverse transcriptase (hTERT) is the rate-limiting component for telomerase activity. Therefore, targeting hTERT represents a promising approach for diminishing telomerase function that will probably not cause substantial side effects on telomerase negative somatic cells.
View Article and Find Full Text PDFThe identification of CTL epitopes from tumor antigens is very important for the development of peptide-based, cancer-specific immunotherapy. Heparanase is broadly expressed in various advanced tumors and can serve as a universal tumor-associated antigen. Although several epitopes of heparanase antigen are known in humans, the corresponding knowledge in mice is still rather limited.
View Article and Find Full Text PDFObjective: To investigate the expression of calcium/calmodulin-dependent serine protein kinase (CASK) induced by short-term hypoxia, and to explore the role of JNK pathway in this signal event.
Methods: EA. hy926 cells were cultured in normoxic condition for 0, 12, 24, 48, 72 h after being exposed to hypoxic condition for 3 h, then the cellular lysates were extracted.
Zhonghua Shao Shang Za Zhi
April 2007
Objective: To investigate the influence of hypoxia on the proliferation and activity of human umbilical vein vascular endothelial cells (EA. hy926).
Methods: EA.
Biochem Biophys Res Commun
December 2006
Transduction with recombinant, replication-defective adenoviral (Ad) vectors encoding a transgene is an efficient method for gene transfer into human dendritic cells (DC). Several studies have demonstrated that epitopes of the human telomerase reverse transcriptase gene (hTERT) can produce CTLs specific for malignant tumors. In this study, we constructed an hTERT recombinant adenovirus (rAd-hTERT) using DNA recombination.
View Article and Find Full Text PDF