J Synchrotron Radiat
January 2024
X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology.
View Article and Find Full Text PDFPilot scale production of one-dimensional (FeS) rods was performed by using an automatic 20 L vessel at 80 °C under atmosphere condition with the resource utilization of Fe-rich sludge. The sludge was simulated at lab-scale with chemical pure of ferric trichloride. After the sludge treatment, the corresponding rods were not formed at room temperature.
View Article and Find Full Text PDFFor polymer semiconductors, the packing ability and molecular weight of polymers play a very critical role in their optoelectronic properties and carrier transport properties. In this work, two polymers, named linear and branch, are designed and synthesized with donor-acceptor (D-A) structure, based on diketopyrrolopyrrole as an electron acceptor and carbazole as an electron donor, and applied these two polymers in organic field-effect transistors. Linear and branch have similar conjugated backbones but different molecular weights and alkyl chains.
View Article and Find Full Text PDFDiketopyrrolopyrrole (DPP), due to its good planarity, π-conjugate structure, thermal stability, and structural modifiability, has received much attention from the scientific community as an excellent semiconductor material for its applications in the field of optoelectronics, such as organic solar cells, organic photovoltaics, and organic field effect transistors. In this study, a new small molecule, pyrrolopyrrole aza-BODIPY (PPAB), based on the thiophene-substituted DPP structure was developed using the Schiff-base formation reaction of DPP and heteroaromatic amines. Absorption spectroscopy, electrochemistry, X-ray diffraction, molecular theoretical simulation calculation were performed, and organic field-effect transistor properties based on PPAB were investigated.
View Article and Find Full Text PDFCr/Fe-bearing sludge is a hazardous solid waste, produced at mass production in smelting, plating and surface finishing industries. Such waste is commonly treated by chemical detoxification and safety landfill, whereas only a few Cr-rich sludge is recycled as a tanning reagent. In this study, a novel route was developed to recycle Cr/Fe-bearing sludge as erdite-bearing flocculant for wastewater treatment.
View Article and Find Full Text PDFA low-temperature hydrothermal process was developed to synthesize erdite adsorbent from a solid waste sludge contained 10.2% Fe, 6.2% Al and 1.
View Article and Find Full Text PDFCurrent high-efficiency hybrid perovskite solar cells (PSCs) have been fabricated with doped hole transfer material (HTM), which has shown short-term stability. Doping applied in HTMs for PSCs can enhance the hole mobility and PSCs' power conversion efficiency, while the stability of PSCs will be significantly decreased due to inherent hygroscopic properties and chemical incompatibility. Development of dopant-free HTM with high hole mobility is a challenge and of utmost importance.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2021
Speckle-tracking imaging has the advantages of simple setup and high-sensitivity to slowly varying phase gradients. Subset size choice is regarded as a trade-off problem for speckle-tracking X-ray imaging where one needs to balance the spatial resolution and accuracy, where the subset was defined as the region of interest of windowing choice for digital image correlation algorithm. An adaptive subset size choice method based on a Fourier transform for effectively detecting sample phase information without foreknowledge of the sample structure is presented in this study.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2020
The speckle-based X-ray imaging technique (SBT), which includes the three imaging modalities of absorption, phase contrast and dark field, is widely used in many fields. However, the influence of the grain size of the diffuser, the coherence of the X-ray source and the pixel size of the detector on the multi-mode imaging quality of SBT is still woefully unclear. In this paper, the whole SBT process is simulated and the influence of these three factors on image quality is discussed.
View Article and Find Full Text PDFAs a strong tool for the study of nanoscience, the synchrotron hard X-ray nanoprobe technique enables researchers to investigate complex samples with many advantages, such as in situ setup, high sensitivity and the integration of various experimental methods. In recent years, an important goal has been to push the focusing spot size to the diffraction limit of ∼10 nm. The multilayer-based Kirkpatrick-Baez (KB) mirror system is one of the most important methods used to achieve this goal.
View Article and Find Full Text PDFWe report the design, construction, and commissioning of a spectrometer for non-resonant inelastic x-ray scattering study installed at BL15U, Shanghai Synchrotron Radiation Facility. It features a 1-m vertical scattering arm. An energy resolution of 1.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2014
A novel sample offline positioning system was developed for hard X-ray micro-focus beamline (BL15U1) at Shanghai Synchrotron Radiation Facility (SSRF). The positioning system is composed of three parts: off-line sample microscope system, on-line sample experiment system, and high-precision positioning sample holder. It makes a potent combination of the on-line X-ray fluorescence imaging and the off-line microscopic examination in three steps: compiling of control program, positioning of sample holder, and conversion of the two coordinates.
View Article and Find Full Text PDFEthylenediaminotetraacetic acid (EDTA) occurring in groundwater aquifers complicates the prediction of nanoparticle movement in the porous medium. This paper demonstrates an approach combining Triple Pulse Experiments (TPEs) and numerical modelling to quantify the influence of EDTA on the deposition and retention of polymer nanoparticles in a water-saturated column packed with iron-oxide-coated sand. TPEs injecting three successive pulses in the order of nanoparticle, EDTA, nanoparticle permit nanoparticle deposition in the absence and the presence of EDTA to be compared.
View Article and Find Full Text PDF