Following the publication of this article, a concerned reader drew to our attention that in Fig. 5C on p. 1704, showing histological images of mouse livers stained with H&E, unexpected areas of similarity were identified in terms of the staining patterns revealed within the data panels themselves.
View Article and Find Full Text PDFMicroRNAs have emerged as critical regulators in the pathogenesis of asthma. However, the role of microRNAs in asthma needs to be further elucidated. In this study, we found that miR-139-5p was greatly decreased in airway smooth muscle (ASM) cells from asthmatic humans as well as ASM cells stimulated with cytokines.
View Article and Find Full Text PDFLiver fibrosis is a chronic liver disease characterized by the proliferation and activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix (ECM). Research suggests that microRNAs (miRNAs) are a new type of regulator of liver fibrosis. In the present study, we investigated the role of microRNA-9 (miR-9) in the process of liver fibrosis, as well as the underlying mechanism of action.
View Article and Find Full Text PDFAccumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons.
View Article and Find Full Text PDFPrevious study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown.
View Article and Find Full Text PDF