Cell Mol Gastroenterol Hepatol
February 2018
Background & Aims: toxin A (TcdA) and toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown.
View Article and Find Full Text PDFClostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice.
View Article and Find Full Text PDFToxemia can develop in Clostridium difficile-infected animals, and correlates with severe and fulminant disease outcomes. Circumstantial evidence suggests that toxemia may occur in patients with C. difficile infection (CDI), but positive diagnosis is extremely rare.
View Article and Find Full Text PDFClostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs.
View Article and Find Full Text PDFThis work presents a sandwich-type electrochemical impedance immunosensor for detecting Clostridium difficile toxin A (TcdA) and toxin B (TcdB). Single domain antibody conjugated gold nanoparticles were applied to amplify the detection signal. Gold nanoparticles (Au NPs) were characterized by transmission electron microscopy and UV–vis spectra.
View Article and Find Full Text PDFTcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication.
View Article and Find Full Text PDFClostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro.
View Article and Find Full Text PDFThe incidence of Clostridium difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB (designated "ABA") that reverses fulminant CDI in mice infected with an epidemic 027 strain after a single injection of the antibody.
View Article and Find Full Text PDFDendritic cells (DCs) are the antigen-presenting cells capable of activating naïve T cells. Although CD4+ T cells are crucial for Cryptosporidium parvum clearance, little is known about the role of DCs in the immune response to this parasite. In this study, the interaction between mouse DCs and C.
View Article and Find Full Text PDFClostridium difficile virulence requires secretion of two exotoxins: TcdA and TcdB. The precise mechanism of toxin uptake and delivery is undefined, but current models predict that the cysteine protease domain (CPD)-mediated autocleavage and release of glucosyltransferase domain (GTD) are crucial for intoxication. To determine the importance of CPD-mediated cleavage to TcdB cytotoxicity, we generated two mutant toxins--TcdB-C698S and TcdB-H653A--and assayed their abilities to intoxicate cells.
View Article and Find Full Text PDFClostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown.
View Article and Find Full Text PDFThe global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence.
View Article and Find Full Text PDFThe global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP(6)). Host mechanisms that protect against such exotoxins are poorly understood.
View Article and Find Full Text PDFGranzyme A (GzmA) is considered a major proapoptotic protease. We have discovered that GzmA-induced cell death involves rapid membrane damage that depends on the synergy between micromolar concentrations of GzmA and sublytic perforin (PFN). Ironically, GzmA and GzmB, independent of their catalytic activity, both mediated this swift necrosis.
View Article and Find Full Text PDFGranzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA.
View Article and Find Full Text PDFPerforin delivers granzymes to induce target-cell apoptosis. At high concentrations, perforin multimerizes in the plasma membrane to form pores. However, whether granzymes enter target cells via membrane pores is uncertain.
View Article and Find Full Text PDFPerforin (PFN) delivery of granzymes (Gzm) into the target cell at the immunological synapse is the major pathway for inducing apoptosis of virus-infected cells and tumors. A validated model for how PFN delivers Gzm into the cytosol is still lacking. PFN was originally thought to work by forming pores in the target cell plasma membrane that allow Gzm entry.
View Article and Find Full Text PDF