Publications by authors named "Liane Gabora"

Stibbard-Hawkes' taphonomic findings are valuable, and his call for caution warranted, but the hazards he raises are being mitigated by a multi-pronged approach; current research on behavioural/cognitive modernity is not based solely on material chronology. Theories synthesize data from archaeology, anthropology, psychology, neuroscience, and genetics, and predictions arising from these theories are tested with mathematical and agent-based models.

View Article and Find Full Text PDF

The Novelty-Seeking Model does not address the iterative nature of creativity, and how it restructures one's worldview, resulting in overemphasis on the role of curiosity, and underemphasis on inspiration and perseverance. It overemphasizes the product; creators often seek merely to express themselves or figure out or come to terms with something. We point to inconsistencies regarding divergent and convergent thought.

View Article and Find Full Text PDF

As the physical world becomes tamed and mapped out, opportunities to experience the unknown become rarer; imaginary worlds provide a much-needed sense of potentiality. Potentiality is central to the Self-Other Re-organization theory of cultural evolution, which postulates that creativity fuels cumulative cultural change. We point to evidence that fear affects, not the magnitude of exploration, but how cautiously it proceeds.

View Article and Find Full Text PDF

We re-examine the long-held postulate that there are two modes of thought, and develop a more fine-grained analysis of how different modes of thought affect conceptual change. We suggest that cognitive development entails the fine-tuning of three dimensions of thought: abstractness, divergence, and context-specificity. Using a quantum cognition modeling approach, we show how these three variables differ, and explain why they would have a distinctively different impacts on thought processes and mental contents.

View Article and Find Full Text PDF

Psychotherapy involves the modification of a client's worldview to reduce distress and enhance well-being. We take a human dynamical systems approach to modeling this process, using Reflexively Autocatalytic foodset-derived (RAF) networks. RAFs have been used to model the self-organization of adaptive networks associated with the origin and early evolution of both biological life, as well as the evolution and development of the kind of cognitive structure necessary for cultural evolution.

View Article and Find Full Text PDF

This paper uses autocatalytic networks to model discontinuous cultural transitions involving cross-domain transfer, using as an illustrative example, artworks inspired by the oldest-known uncontested example of figurative art: the carving of the Hohlenstein-Stadel Löwenmensch, or lion-human. Autocatalytic networks provide a general modeling setting in which nodes are not just passive transmitters of activation; they actively galvanize, or "catalyze" the synthesis of novel ("foodset-derived") nodes from existing ones (the "foodset.") This makes them uniquely suited to model how new structure grows out of earlier structure, i.

View Article and Find Full Text PDF

In reflexively autocatalytic foodset (RAF)-generated networks, nodes are not only passive transmitters of activation, but they also actively galvanize, or "catalyze" the synthesis of novel ("foodset-derived") nodes from existing ones (the "foodset"). Thus, RAFs are uniquely suited to modeling how new structure grows out of currently available structure, and analyzing phase transitions in potentially very large networks. RAFs have been used to model the origins of evolutionary processes, both biological (the origin of life) and cultural (the origin of cumulative innovation), and may potentially provide an overarching framework that integrates evolutionary and developmental approaches to cognition.

View Article and Find Full Text PDF

Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change-e.g.

View Article and Find Full Text PDF

This paper proposes a model of the cognitive mechanisms underlying the transition to behavioural and cognitive modernity in the Upper Palaeolithic using autocatalytic networks. These networks have been used to model life's origins. More recently, they have been applied to the emergence of structure capable of undergoing evolution.

View Article and Find Full Text PDF

Autocatalytic networks have been used to model the emergence of self-organizing structure capable of sustaining life and undergoing biological evolution. Here, we model the emergence of cognitive structure capable of undergoing cultural evolution. Mental representations (MRs) of knowledge and experiences play the role of catalytic molecules, and interactions among them (e.

View Article and Find Full Text PDF

The argument that cumulative technological culture originates in technical-reasoning skills is not the only alternative to social accounts; another possibility is that accumulation of both technical-reasoning skills and enhanced social skills stemmed from the onset of a more basic cognitive ability such as recursive representational redescription. The paper confuses individual learning of pre-existing information with creative generation of new information.

View Article and Find Full Text PDF

Creative thought is conventionally believed to involve searching memory and generating multiple independent candidate ideas followed by selection and refinement of the most promising. Honing theory, which grew out of the quantum approach to describing how concepts interact, posits that what appears to be discrete, separate ideas are actually different projections of the same underlying mental representation, which can be described as a superposition state, and which may take different outward forms when reflected upon from different perspectives. As creative thought proceeds, this representation loses potentiality to be viewed from different perspectives and manifest as different outcomes.

View Article and Find Full Text PDF

To what extent are creative processes in one domain (e.g., technology) affected by information from other domains (e.

View Article and Find Full Text PDF

This paper proposes that the distinctively human capacity for cumulative, adaptive, open-ended cultural evolution came about through two temporally-distinct cognitive transitions. First, the origin of Homo-specific culture over two MYA was made possible by the onset of a finer-grained associative memory that allowed episodes to be encoded in greater detail. This in turn meant more overlap amongst the distributed representations of these episodes, such that they could more readily evoke one another through self-triggered recall (STR).

View Article and Find Full Text PDF

Encultured individuals see the behavioral rules of cultural systems of moral norms as objective. In addition to prescriptive regulation of behavior, moral norms provide templates, scripts, and scenarios regulating the expression of feelings and triggered emotions arising from perceptions of norm violation. These allow regulated defensive responses that may arise as moral idea systems co-opt emotionally associated biological survival instincts.

View Article and Find Full Text PDF

It has been proposed that cultural evolution was made possible by a cognitive transition brought about by onset of the capacity for self-triggered recall and rehearsal. Here we develop a novel idea that models of collectively autocatalytic networks, developed for understanding the origin and organization of life, may also help explain the origin of the kind of cognitive structure that makes cultural evolution possible. In this setting, mental representations (for example, memories, concepts, ideas) play the role of 'molecules', and 'reactions' involve the evoking of one representation by another through remindings and associations.

View Article and Find Full Text PDF
Honing Theory: A Complex Systems Framework for Creativity.

Nonlinear Dynamics Psychol Life Sci

January 2017

This paper proposes a theory of creativity, referred to as honing theory, which posits that creativity fuels the process by which culture evolves through communal exchange amongst minds that are self-organizing, self-maintaining, and self-reproducing. According to honing theory, minds, like other self-organizing systems, modify their contents and adapt to their environments to minimize entropy. Creativity begins with detection of high psychological entropy material, which provokes uncertainty and is arousal-inducing.

View Article and Find Full Text PDF

Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory.

View Article and Find Full Text PDF

Dietrich and Haider (Psychonomic Bulletin & Review, 21 (5), 897-915, 2014) justify their integrative framework for creativity founded on evolutionary theory and prediction research on the grounds that "theories and approaches guiding empirical research on creativity have not been supported by the neuroimaging evidence." Although this justification is controversial, the general direction holds promise. This commentary clarifies points of disagreement and unresolved issues, and addresses mis-applications of evolutionary theory that lead the authors to adopt a Darwinian (versus Lamarckian) approach.

View Article and Find Full Text PDF

We analyze different aspects of our quantum modeling approach of human concepts and, more specifically, focus on the quantum effects of contextuality, interference, entanglement, and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, that is, prototype theory, exemplar theory, and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and we shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference.

View Article and Find Full Text PDF

We support the authors' claims, except that we point out that also quantum structure different from quantum probability abundantly plays a role in human cognition. We put forward several elements to illustrate our point, mentioning entanglement, contextuality, interference, and emergence as effects, and states, observables, complex numbers, and Fock space as specific mathematical structures.

View Article and Find Full Text PDF

Dawkins' replicator-based conception of evolution has led to widespread mis-application of selectionism across the social sciences because it does not address the paradox that necessitated the theory of natural selection in the first place: how do organisms accumulate change when traits acquired over their lifetime are obliterated? This is addressed by von Neumann's concept of a self-replicating automaton (SRA). A SRA consists of a self-assembly code that is used in two distinct ways: (1) actively deciphered during development to construct a self-similar replicant, and (2) passively copied to the replicant to ensure that it can reproduce. Information that is acquired over a lifetime is not transmitted to offspring, whereas information that is inherited during copying is transmitted.

View Article and Find Full Text PDF

The phenomenon of preadaptation, or exaptation (wherein a trait that originally evolved to solve one problem is co-opted to solve a new problem) presents a formidable challenge to efforts to describe biological phenomena using a classical (Kolmogorovian) mathematical framework. We develop a quantum framework for exaptation with examples from both biological and cultural evolution. The state of a trait is written as a linear superposition of a set of basis states, or possible forms the trait could evolve into, in a complex Hilbert space.

View Article and Find Full Text PDF