Rotator cuff tear is a significant problem that leads to poor clinical outcomes due to muscle degeneration after injury. The objective of this study was to synergistically increase the number of proregenerative cells recruited to injure rotator cuff muscle through a novel dual treatment system, consisting of a bone marrow mobilizing agent (VPC01091), hypothesized to "push" prohealing cells into the blood, and localized delivery of stromal cell-derived factor-1α (SDF-1α), to "pull" the cells to the injury site. Immediately after rotator cuff tendon injury in rat, the mobilizing agent was delivered systemically, and SDF-1α-loaded heparin-based microparticles were injected into the supraspinatus muscle.
View Article and Find Full Text PDFThe immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6C monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4.
View Article and Find Full Text PDFAs a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content.
View Article and Find Full Text PDFSustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively.
View Article and Find Full Text PDFBiodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells.
View Article and Find Full Text PDF