Publications by authors named "Liandi Guan"

The vigorous nanomedicine offers significant possibilities for effective therapeutics of various diseases, and nanovesicles (NVs) represented by artificial liposomes and natural exosomes and cytomembranes especially show great potential. However, their complex interactions with cells, particularly the heterogeneous extracellular adsorptions, are difficult to analyze spatiotemporally due to the transient dynamics. In this study, by single NVs tracking, the extracellular NVs adsorptions are directly observed and their heterogeneous characteristics are revealed.

View Article and Find Full Text PDF

Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial.

View Article and Find Full Text PDF

A novel probe was synthesized with a turn-on NIR fluorescent (NIRF)/photoacoustic (PA) response to NADPH, which was successfully applied in both monitoring intracellular NADPH and dual-modal imaging of tumor-bearing mice. It exhibits good potential in studying and understanding the tumor energy metabolism and treatment process related to NADPH.

View Article and Find Full Text PDF

Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques.

View Article and Find Full Text PDF