The spatial characteristics of element flow and its spillover are important topics in economics, sociology, and geography, and significant to the promotion of the coordinated development of urban agglomerations. To study element flow in the Lanxi urban agglomeration and its effect to economic development, the spatial network characteristics and economic spillover effect were studied using the methods of spatial network analysis, the spatial Durbin model, and spatial effect decomposition. The results showed that (1) the scale of element flow in the Lanxi urban agglomeration is in an unbalanced distribution state, the scale of element flow in Lanzhou and Xining is higher than that in surrounding cities, and the connection between surrounding cities is also higher than that between other cities; (2) the network structure of element flow in the Lanxi urban agglomeration is relatively intensive, with Lanzhou and Xining as the center of element concentration, which indicates an obvious 'center periphery' structure, and gradually spreads from the core area to the surrounding areas; and (3) the element concentration level of the Lanxi urban agglomeration has a significant positive spillover effect, which plays a significant role in driving the development of surrounding cities.
View Article and Find Full Text PDFPlant leaf morphological and photosynthetic physiological characteristics are key functional traits in the adaptability of plants to heterogeneous environments. Analysis of the correlation between leaf morphological traits and photosynthetic physiological characteristics of salt marsh plants is helpful to deepen our understanding of how salt marsh plants adjust their leaf structure and function to adapt to their environment. However, there have been few studies on the relationship between leaf morphology and photosynthetic physiological characteristics of plants in inland salt marshes under a habitat gradient.
View Article and Find Full Text PDFSoil aggregation is closely related to the soil organic carbon sequestration, both of which plays an important role in the stability of the soil carbon pool. However, the results of the impact of yak grazing intensity on the soil carbon process in alpine meadows have been unclear. With the marsh meadow as the research object in the Gahai wetland of the east Qinghai-Tibet Plateau, we analyzed the influence of different grazing intensities on the allocation of mass, stability and aggregate-associated organic carbon content of aggregates in the surface soil (0-20cm) of pasture by the Le Bissonnais method.
View Article and Find Full Text PDF