Publications by authors named "Liana Toia"

Background: The presence of dilated intercellular spaces in the stratified squamous lining of the esophagus is the pathognomonic feature of reflux esophagitis secondary to gastroesophageal reflux disease (GERD). In addition to stomach acid, bile salts are major constituents of gastroesophageal refluxate. The aim of our study was to determine the effect of bile salts cocktail at different pHs on epithelial junctions in an in vitro transwell model of stratified esophageal squamous epithelium.

View Article and Find Full Text PDF

Background: Barrett's esophagus is a preneoplastic metaplasia in which the normal squamous epithelium of the esophagus changes to an intestinal, columnar phenotype due to long-term gastro-esophageal reflux. The major components of this reflux are bile and stomach acid. Previous in vitro studies on the effect of bile and acid on esophageal cells have predominantly relied on transformed esophageal squamous cells or cancer cells grown in monolayer culture.

View Article and Find Full Text PDF

Objective: This study aimed to identify pathways and cellular processes that are modulated by exposure of normal esophageal cells to bile and acid.

Background: Barrett's esophagus most likely develops as a response of esophageal stem cells to the abnormal reflux environment. Although insights into the underlying molecular mechanisms are slowly emerging, much of the metaplastic process remains unknown.

View Article and Find Full Text PDF

Purpose: Chromosomal gain at 7q21 is a frequent event in esophageal adenocarcinoma (EAC). However, this event has not been mapped with fine resolution in a large EAC cohort, and its association with clinical endpoints and functional relevance are unclear.

Experimental Design: We used a cohort of 116 patients to fine map the 7q21 amplification using SNP microarrays.

View Article and Find Full Text PDF

Background: Barrett's esophagus (BE) is the predominant risk factor for the development of esophageal adenocarcinoma. BE is characterized by intestinal metaplasia with goblet cells. Reflux of bile acids is known to induce intestinal metaplasia, but the mechanisms are unclear.

View Article and Find Full Text PDF

Objectives: Bile acids and acid are implicated in the development of Barrett's esophagus. Evidence suggests that Barrett's esophagus intestinal metaplasia may occur via induction of caudal homeobox gene 2 (CDX2). We hypothesized that induction of CDX2 by bile acids may be due to ligand-dependent transactivation of epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Glutamine, a key nutrient for the enterocyte, is transported among other proteins by ASCT2. Epidermal growth factor (EGF) augments intestinal adaptation. We hypothesized that short-term treatment of human enterocytes with EGF enhances glutamine transport by increasing membranal ASCT2.

View Article and Find Full Text PDF

Background: Epidermal growth factor (EGF) plus growth hormone (GH) enhances luminal glutamine transport into rabbit and human intestinal cells. Our objective was to screen for activation status of signal proteins in C2(BBe)1 cells (enterocyte-like cell line) in response to side-specific EGF or GH treatment and to investigate the dependence of EGF receptor (EGFR) phosphorylation status on its tyrosine kinase.

Methods: C2(BBe)1 cells on Transwells were treated for 15 minutes on either the basolateral or apical-side with EGF or GH.

View Article and Find Full Text PDF

Mechanical strain initiates a variety of responses in pulmonary epithelial cells. The signaling pathways and molecular alterations leading to these responses remain unclear To identify novel signal transduction pathways activated by strain, macroarray analysis was performed on strained pulmonary epithelial cells. Glutathione S-transferase (GST) pi, GST mu, and heat shock protein (HSP)-27 were increased by strain.

View Article and Find Full Text PDF

Two weeks after 70% enterectomy, glutamine (Gln) transport is downregulated in rabbit residual bowel due to a decrease in system B(0) activity. Providing epidermal growth factor (EGF) and growth hormone (GH) restores Gln transport by increasing systems A and B(0,+) activities. We hypothesized that changes in Na(+)-dependent broad-spectrum neutral amino acid transporter (ATB(0)/ASCT2) protein and mRNA expression correlate with system B(0) activity.

View Article and Find Full Text PDF

Background: Sodium-dependent brush-border nutrient transport is decreased 2 weeks after massive enterectomy. This down-regulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesize that glutamine (GLN) transport will be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B(0)/ASCT2.

View Article and Find Full Text PDF

Background: Sodium-dependent brush border nutrient transport is decreased 2 weeks after massive enterectomy. This downregulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesized that glutamine (GLN) transport would be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B0/ASCT2.

View Article and Find Full Text PDF