Mitochondrial DNA A DNA Mapp Seq Anal
October 2018
The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
April 2018
We studied telomere length (TL) and mitochondrial DNA (mtDNA) copy number variations in individuals from Latvian Caucasian population in different age groups. We showed a positive correlation between TL and mtDNA copy number in individuals of up to 90 years of age; however, this correlation was not observed in the 90-100 years age group. While TL shortened with age and mtDNA content decreased with increasing age, in this study it was observed that mtDNA copy number in nonagenarians was slightly higher than in the 60-89 years age group.
View Article and Find Full Text PDFVariations of the nonrecombining Y-chromosomal region were investigated in 159 unrelated Baltic-speaking ethnic Latvians from four different geographic regions, using 28 biallelic markers and 12 short tandem repeats. Eleven different haplogroups (hgs) were detected in a regionally homogeneous Latvian population, among which N1c, R1a, and I1 cover more than 85% of its paternal lineages. When compared its closest geographic neighbors, the composition of the Latvian Y-chromosomal gene pool was found to be very similar to those of Lithuanians and Estonians.
View Article and Find Full Text PDFPopulation studies have demonstrated that telomere length (TL) displays great diversity among different populations. Previously described controversial findings associated longevity with specific mitochondrial DNA haplogroups (hgs) (e.g.
View Article and Find Full Text PDFThe shortening of telomeres with ageing is a well-documented observation; however, the reported number of nucleotides in telomeres varies between different laboratories and studies. Such variability is likely caused by ethnic differences between the populations studied. Until now, there were no studies that investigated the variability of telomere length in a senescent Latvian population of the most common mitochondrial haplogroups, defined as H (45%), U (25%), Y chromosomal N1c (40%) and R1a1 (40%).
View Article and Find Full Text PDFIsolated cleft lip and/or palate (CL/CLP) is a complex congenital anomaly with many contributing factors. There are several genes involved in the aetiology of CL/CLP, they are different in selected populations. In a previous study, the mitochondrial haplotypes of Latvian subjects with CL/CLP were characterized.
View Article and Find Full Text PDFVarious studies have demonstrated that mitochondrial DNA (mtDNA) heteroplasmy tends to increase with age and that the observed frequency of heteroplasmy among populations mostly depends on the way it is measured. Therefore, we investigated age-related association on the presence of mtDNA heteroplasmy within the hypervariable segment 1 (HVS-I) in a selected study group. The study group consisted of 300 maternally unrelated Latvians ranging in age from 18 to over 90 years.
View Article and Find Full Text PDFLatvia has one of the highest prevalence of isolated cleft lip with or without cleft palate (CL/P) in Europe. To clarify the genetic origins of the Latvian cleft population and establish a method for genetic mapping, mitochondrial DNA variation was studied in a population affected with clefting. One-hundred and seven subjects and 351 samples from unrelated healthy volunteers representing four anthropologically, archaeologically and ethno-linguistically different regions of Latvia were selected.
View Article and Find Full Text PDFThe Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples.
View Article and Find Full Text PDF