Purpose Of The Review: This review highlights knowledge gaps surrounding the development and use of interventions for Acute Stress Reactions (ASRs). First, we propose that a stepped care approach to intervention for ASR be developed and utilized in military operational environments. A stepped care approach would include detection and assessment, followed by behavioral intervention, and then medication intervention for ASRs.
View Article and Find Full Text PDFUnlabelled: Scientific evidence that acute, posttrauma sleep disturbances (eg, nightmares and insomnia) can contribute significantly to the pathogenesis of trauma-induced disorders is compelling. Sleep disturbances precipitating from trauma are uniquely predictive of daytime posttrauma symptom occurrence and severity, as well as subsequent onset of mental health disorders, including post-traumatic stress disorder. Conversely, adequate sleep during the acute posttrauma period is associated with reduced likelihood of adverse mental health outcomes.
View Article and Find Full Text PDFIntroduction: Acute Stress Reactions (ASRs) affect a subgroup of individuals who experience traumatic stress. In the context of military operations, such reactions are often termed Combat and Operational Stress Reactions (COSRs). COSRs not only encompass all symptoms of ASRs but also include additional symptoms related to military combat and may develop at a rate higher than the general public experiences ASRs.
View Article and Find Full Text PDFPreclinical models of organismal response to traumatic stress (threat of death or serious injury) can be monitored using neuroendocrine, behavioral, and structural metrics. While many rodent models of traumatic stress have provided a glimpse into select components of the physiological response to acute and chronic stressors, few studies have directly examined the potential differences between stressors and their potential outcomes. To address this gap, we conducted a multi-level comparison of the immediate and longer-term effects of two types of acute traumatic stressors.
View Article and Find Full Text PDFRationale: Evaluation of pharmacotherapies for acute stress disorder (ASD) or post-traumatic stress disorder (PTSD) is challenging due to robust heterogeneity of trauma histories and limited efficacy of any single candidate to reduce all stress-induced effects. Pursuing novel mechanisms, such as the nociceptin/orphanin FQ (NOP) system, may be a viable path for therapeutic development and of interest as it is involved in regulation of relevant behaviors and recently implicated in PTSD and ASD.
Objectives: First, we evaluated NOP receptor antagonism on general behavioral performance and again following a three-species predator exposure model (Experiment 1).
Multiple recent instances of nerve agent (NA) exposure in civilian populations have occurred, resulting in a variety of negative effects and lethality in both adult and pediatric populations. Seizures are a prominent effect of NAs that can result in neurological damage and contribute to their lethality. Current anticonvulsant treatments for NAs are approved for adults, but no approved pediatric treatments exist.
View Article and Find Full Text PDFRisk exists for civilian exposure to nerve agents (NA), and exposure can produce prolonged seizures. Pediatric populations are at greater risk for injury or death due to the central nervous system effects of NAs. To address the need to evaluate the effectiveness of anticonvulsants, pediatric and adult animal models were established to test the effectiveness of anticonvulsant drugs for treating NA-induced seizures in pediatric populations.
View Article and Find Full Text PDFObjectives: Children and adults are likely to be among the casualties in a civilian nerve agent exposure. This study evaluated the efficacy of valnoctamide (racemic-VCD), sec-butylpropylacetamide (racemic-SPD), and phenobarbital for stopping nerve agent seizures in both immature and adult rats.
Methods: Female and male postnatal day (PND) 21, 28, and 70 (adult) rats, previously implanted with electroencephalography (EEG) electrodes were exposed to seizure-inducing doses of the nerve agents sarin or VX and EEG was recorded continuously.
Genetics likely play a role in various responses to nerve agent (NA) exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses. This study uses different mouse strains to identify if mouse strain differences in sarin exposure exist. In Experiment 1, basal levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CE) were measured in different strains of naïve mice to account for potential pharmacokinetic determinants of individual differences.
View Article and Find Full Text PDFGenetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies.
View Article and Find Full Text PDFLosing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al.
View Article and Find Full Text PDFApproximately 30% of current drinkers in the United States drink excessively, and are referred to as problem/hazardous drinkers. These individuals, who may not meet criteria for alcohol abuse or dependence, comprise binge, heavy drinkers, or both. Given their high prevalence, interventions that reduce the risk of binge and heavy drinking have important public health implications.
View Article and Find Full Text PDFBackground: Crossed high-alcohol-preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines and demonstrate blood ethanol concentrations (BECs) during free-choice drinking reminiscent of those observed in alcohol-dependent humans. In this report, we investigated the relationship between free-choice drinking, intoxication, tolerance, and sensitization in cHAP mice. We hypothesized that initially mice would become ataxic after drinking alcohol, but that increased drinking over days would be accompanied by increasing tolerance to the ataxic effects of ethanol (EtOH).
View Article and Find Full Text PDFBackground: Crossed high alcohol preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines, and we demonstrate blood ethanol concentrations (BECs) during free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. Therefore, this line may provide an unprecedented opportunity to learn about the consequences of excessive voluntary ethanol (EtOH) consumption, including metabolic tolerance and liver pathology. Cytochrome p450 2E1 (CYP2E1) induction plays a prominent role in driving both metabolic tolerance and EtOH-induced liver injury.
View Article and Find Full Text PDFBackground: Abuse of alcohol during adolescence continues to be a problem, and it has been shown that earlier onset of drinking predicts increased alcohol abuse problems later in life. High levels of impulsivity have been demonstrated to be characteristic of alcoholics, and impulsivity has also been shown to predict later alcohol use in teenage subjects, showing that impulsivity may precede the development of alcohol use disorders. These experiments examined adolescent drinking in a high-drinking, relatively impulsive mouse population and assessed its effects on adult drinking and adult impulsivity.
View Article and Find Full Text PDFMultiple lines of high alcohol-preferring (HAP) mice were selectively bred for their intake of 10% ethanol (v/v) during 24-hour daily access over a 4-week period, with the highest drinking lines exhibiting intakes in excess of 20 g/kg/day. We observed circadian drinking patterns and resulting blood ethanol concentrations (BECs) in the HAP lines. We also compared the drinking rhythms and corresponding BECs of the highest drinking HAP lines to those of the C57BL/6J (B6) inbred strain.
View Article and Find Full Text PDFSelectively breeding lines of mice and rats to differ in alcohol intake has proven useful for defining which traits correlate with high alcohol drinking behavior, as well as for creating animal models of alcoholism. This study reports the derivation of two novel sets of selected lines, High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) replicate 2 and 3 lines. Mice were mass-selected using the same procedure as in the replicate 1 lines: using HS/Ibg as a progenitor, mice were selected for differences in 2-bottle choice intake of 10% alcohol during a 4-week testing period.
View Article and Find Full Text PDF