The ultrafast dynamics of the bimetallic cluster Ag2Au is investigated by pump-probe negative ion-to-neutral-to-positive ion (NeNePo) spectroscopy. Preparation of the neutral cluster in a highly nonequilibrium state by electron detachment from the mass-selected anion, and subsequent probing of the neutral nuclear dynamics through two-photon ionization to the cationic state, leads to strongly probe-energy-dependent transient cation-abundance signals. The origin of this pronounced time and wavelength dependence of the ionization probability on the femtosecond scale is revealed by ab initio theoretical simulations of the transient spectra.
View Article and Find Full Text PDFSeries of time-resolved still images of the explosion dynamics of micrometer-sized water droplets after femtosecond laser-pulse irradiation were obtained for different laser-pulse intensities. Amplified pulses centered around a wavelength of 805 nm with 1-mJ energy and 60-fs duration were focused onto the droplet to initiate the dynamics. Several effects, such as forward and backward plumes, jets, water films, and shock waves, were investigated.
View Article and Find Full Text PDFReactions of free silver anions Agn- (n = 1 - 13) with O2, CO, and their mixtures are investigated in a temperature controlled radio frequency ion trap setup. Cluster anions Agn- (n = 1 - 11) readily react with molecular oxygen to yield AgnOm- (m = 2, 4, or 6) oxide products. In contrast, no reaction of the silver cluster anions with carbon monoxide is detected.
View Article and Find Full Text PDFA novel size dependence in the adsorption reaction of multiple O2 molecules onto anionic silver clusters Agn- (n = 1-5) is revealed by gas-phase reaction studies in an rf-ion trap. Ab initio theoretical modeling based on DFT method provides insight into the reaction mechanism and finds cooperative electronic and structural effects to be responsible for the size selective reactivity of Agn- clusters toward one or more O2. In particular, Agn- clusters with odd n have paired electrons and therefore bind one O2 only weakly, but they are simultaneously activated to adsorb a strongly bound second oxygen molecule.
View Article and Find Full Text PDFTemperature-dependent rf-ion trap mass spectrometry and first-principles simulations reveal the detailed reaction mechanism of the catalytic gas-phase oxidation of CO by free Au(2)(-) ions in the presence of O(2). A metastable intermediate with a mass of Au(2)CO(3)(-) was observed at low temperatures. Two alternative structures corresponding to digold carbonate or peroxyformate are predicted for this intermediate.
View Article and Find Full Text PDF