Global nocturnal temperatures are rising more rapidly than daytime temperatures and have a large effect on crop productivity. In particular, stomatal conductance at night (g ) is surprisingly poorly understood and has not been investigated despite constituting a significant proportion of overall canopy water loss. Here, we present the results of 3 yr of field data using 12 spring Triticum aestivum genotypes which were grown in NW Mexico and subjected to an artificial increase in night-time temperatures of 2°C.
View Article and Find Full Text PDFSource traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development.
View Article and Find Full Text PDFWater deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions.
View Article and Find Full Text PDFIn this study, four tobacco transformants overexpressing the inorganic carbon transporter B gene (ictB) were screened for photosynthetic performance relative to the wild type (WT) in field-based conditions. The WT and transgenic tobacco plants were evaluated for photosynthetic performance to determine the maximum rate of carboxylation (Vc, max), maximum rate of electron transport (Jmax), the photosynthetic compensation point (Γ*), quantum yield of PSII (ΦPSII), and mesophyll conductance (gm). Additionally, all plants were harvested to compare differences in above-ground biomass.
View Article and Find Full Text PDFSeveral breeding initiatives have sought to improve flag leaf performance as its health and physiology are closely correlated to rice yield. Previous studies have described natural variation of photosynthesis for flag leaves; however, none has examined their performance under the non-steady-state conditions that prevail in crop fields. Photosynthetic induction is the transient response of photosynthesis to a change from low to high light.
View Article and Find Full Text PDFPhotosynthetic induction describes the transient increase in leaf CO uptake with an increase in light. During induction, efficiency is lower than at steady state. Under field conditions of fluctuating light, this lower efficiency during induction may cost > 20% of potential crop assimilation.
View Article and Find Full Text PDF