Although the fiber-based triboelectric nanogenerator (F-TENG) has been recognized as one of the most promising flexible sensor systems, it is facing a challenge of balancing the performance and the processing scalability. Herein, we develop a hierarchical coaxial F-TENG possessing PU layer, Ag layer, and PA layer from the core to the outer part by an efficient and straightforward two-step braiding method. Owning a small diameter of 1 mm, the F-TENG presents a high linear sensing response, a wide working range of 5 to 150 kPa, and a quick reaction speed of around 200 ms.
View Article and Find Full Text PDFNowadays, it is highly desirable to achieve high strength, flexibility and electrochemical performance for supercapacitor electrodes simultaneously. Herein, few-layer MXene flakes are assembled into free-standing films by facile vacuum-filtration method, in which hydrophilic-functionalized carbon nanotubes (CNTs) are further incorporated. The morphology of MXene/CNT composite films evolves from compact to 'CNT in MXene' to laminar to 'MXene in CNT' and finally to separate structures when increasing the CNT weight percentage.
View Article and Find Full Text PDFp-n homojunctions are superior to p-n heterojunctions in constructing nanoscale functional devices, owing to the excellent crystallographic alignment. We tune the electronic properties of monolayer siligene (SiGe) into p/n-type the covalent functionalization of electrophilic/nucleophilic dopants, using quantum transport calculations. It is found that the n-type doping effect of K atoms is stronger than that of benzyl viologen (BV) molecule on the surface of SiGe monolayer, owing to the strong covalent interaction.
View Article and Find Full Text PDFHighly conductive and stretchable fibers have recently attracted increasing attention owing to their potential for application in flexible wearable electronics. Carboxylated carbon nanotubes (c-CNTs) are coated onto flexible fibers as a convenient way of fabricating wearable strain sensors. However, the conductivity of a c-CNT is reduced due to the destruction of the graphitized structure of the CNT during carboxylation.
View Article and Find Full Text PDFBead-on-string nanofibers are explored as potential carriers of micro-level solid drug particles in recent years in drug release and tissue engineering. The special alternating distribution of nanoscale fiber and micro beads satisfied the fully encapsulation of particle drugs and the corresponding sustained release. Antibiotic drug tetracycline hydrochloride (TCH) was used as solid model drug particles.
View Article and Find Full Text PDFThere is a growing interest in fiber-shaped supercapacitors, which are likely to meet the demands of wearable electronics. However, the loading of active material is so small that the energy density of fiber supercapacitors is low. In this research, a graphene oxide/poly(pyrrole) (GO/PPy) hybrid was applied as the active material and a novel method to accomplish a high loading of the active material on poly(lactic acid) (PLA) filaments is proposed.
View Article and Find Full Text PDFThe Li-air battery represents a promising power candidate for future electronics due to its extremely high energy density. However, the use of Li-air batteries is largely limited by their poor cyclability in ambient air. Herein, Li-air batteries with ultralong 610 cycles in ambient air are created by combination of low-density polyethylene film that prevents water erosion and gel electrolyte that contains a redox mediator of LiI.
View Article and Find Full Text PDFLoading of Ca(2+)-sensitive fluorescent probes into plant cells is an essential step to measure activities of free Ca(2+) ions in cytoplasm with a fluorescent imaging technique. Fluo-3 is one of the most suitable Ca(2+) indicators for CLSM. We loaded pollen with fluo-3/AM at three different temperatures.
View Article and Find Full Text PDFThe pollen tube has been widely used to study the mechanisms underlying polarized tip growth in plants. A steep tip-to-base gradient of free cytosolic calcium ([Ca(2+)](cyt)) is essential for pollen-tube growth. Local Ca(2+) influx mediated by Ca(2+)-permeable channels plays a key role in maintaining this [Ca(2+)](cyt) gradient.
View Article and Find Full Text PDF