Publications by authors named "Lian-ying Zhang"

We report the synthesis of uniform Pd-based high-entropy alloy clusters rapid Joule heating. The quinary PdMnFeCuNi clusters exhibit 4.95 times higher mass activity than the Commercial Pt/C for the oxygen reduction reaction, and outstanding stability with only 2 mV decay in the half-wave potential after 20 000 cycles of testing.

View Article and Find Full Text PDF

We propose a universal, green, and surfactant-free strategy to synthesize noble metal particles with high monodispersity using gaseous H as a reducing agent in a solution at 60 °C. The prepared Pt nanoparticles have a 24 mV more positive half-wave potential than the commercially available Pt/C in the oxygen reduction reaction, while showing high durability with negligible half-wave potential decay after 10 000 cycles of testing.

View Article and Find Full Text PDF

Tin dioxide (SnO) is being investigated as a promising anode material for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Effectively dispersing small sized SnO crystals in well-designed carbonaceous matrices using eco-friendly materials and simplified methods is an urgent task. Herein, gallic acid (GA) molecules, abundant in plant kingdom, are firstly selected to react with few-layered graphene oxide (GO) in mild hydrothermal condition, and the GA modulated reduced graphene oxide (GA@RGO) supporting skeleton can be obtained.

View Article and Find Full Text PDF

We develop a facile, selective edge etching strategy to create edge sites in Pd metallene using acetic acid. The created edge sites remarkably increase the electrochemically active surface area but reduce the charge transfer resistance, resulting in significant enhancement of catalytic activity and stability toward formic acid oxidation.

View Article and Find Full Text PDF

Noble metal-based metallenes are attracting intensive attention in energy catalysis, but it is still very challenging to precisely control the surface structures of metallenes for higher catalytic properties on account of their intrinsic thermodynamic instability. Herein, the synthesis of tensile-strained holey Pd metallene by oxidative etching is reported using hydrogen peroxide, which exhibits highly enhanced catalytic activity and stability in comparison with normal Pd metallene toward both oxygen reduction reaction and formic acid oxidation. The pre-prepared Pd metallene functions as a catalyst to decompose hydrogen peroxide, and the Pd atoms in amorphous regions of Pd metallene are preferentially removed by the introduced hydrogen peroxide during the etching process.

View Article and Find Full Text PDF

Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system.

View Article and Find Full Text PDF

Morphological control of noble-metal-based nanocrystals has attracted enormous attention because their catalytic behaviors can be optimized well by adjusting the size and shape. Herein, the controllable synthesis of web-footed PdCu nanosheets via a facile surfactant-free method is reported. It is discovered that the Cu(II) precursor in this synthetic system displays a critical role in growing branches along the lateral of nanosheets.

View Article and Find Full Text PDF

Pd-based catalysts with maximized exposure of active sites, ultrafast electron transport, and cocatalyst-promoted intrinsic activity are highly desirable for the formic acid oxidation reaction (FAOR), but their fabrication presents a formidable challenge. For the first time, dynamic self-assembly of adenine has been utilized for growth of ultrasmall, highly dispersed, and clean Pd NPs on pristine graphene. The obtained nanohybrid shows remarkably enhanced FAOR catalytic activity and durability compared to Pd NPs directly grown on pristine graphene and commercial Pd/C.

View Article and Find Full Text PDF

3D ZIF-67-particles-impregnated cellulose-nanofiber nanosheets with oriented macropores are synthesized via directional-freezing-assisted in situ self-assembly, and converted to 3D CoP-nanoparticle (NP)-embedded hierarchical, but macropores-oriented, N-doped carbon nanosheets via calcination and phosphidation. The obtained nanoarchitecture delivers overpotentials at 10 and 50 mA cm and Tafel slope of 82.1 and 113.

View Article and Find Full Text PDF

Highly conductive cocatalysts with great promotion effects are critical for the development of pristine graphene supported Pt-based catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, identification of these cocatalysts and controlled fabrication of Pt/cocatalyst/graphene hybrids with superior catalytic performance present great challenges. For the first time, pristine graphene supported N-rich carbon (NC) has been controllably fabricated ionic-liquid-based self-assembly for growth of small and uniformly dispersed Pt NP chains to improve the MOR catalytic activity.

View Article and Find Full Text PDF

In this work, a simple and effective method is developed to synthesize zinc ferrite nanoparticles (ZnFeO) in a redox coprecipitation reaction system containing only ferrous and zinc salt followed by a solid-state reaction. On this foundation, ZnFeO nanoparticles with reduced size are further immobilized by reduced graphene oxide (RGO) to engineer a ZnFeO/RGO composite by simply introducing graphene oxide (GO) in the above reaction system. The ZnFeO/RGO composite electrode exhibits attractive lithium-ion storage capability with a reversible capacity of about 760 mAh·g for 200 charge/discharge cycles and 603 mAh·g for 700 cycles under a current rate of 1.

View Article and Find Full Text PDF

Tuning the chemical composition and surface structure of electrodes is demonstrated as a feasible and effective strategy to tailor advanced catalysts for energy electrocatalysis. In this work, hierarchical palladium-silver alloy nanosheets (PdAg NS) with the thickness ~7 atoms and rich atomic defects are successfully prepared, using the carbon monoxide (CO) confinement approach. The optimized PdAg NS/C exhibits 8.

View Article and Find Full Text PDF

As a typical metal selenide, CoSe is a kind of foreground anode material for lithium-ion batteries (LIBs) because of its two-dimensional layer structure, good electrical conductivity, and high theoretical capacity. In this work, the original CoSe/N-doped carbon (CoSe/NC) composites were synthesized using ZIF-67 as a precursor, in which the CoSe nanoparticles are encapsulated in NC nanolayers and they are connected through C-Se bonds. The coating structure and strong chemical coupling make the NC nanolayers could better effectively enhance the lithium storage properties of CoSe/NC composites.

View Article and Find Full Text PDF

Perforated ultrathin Pd nanosheets with crystalline/amorphous heterostructures are rationally synthesized to offer a large electrochemically active surface area of 172.6 m g and deliver a 5.6 times higher apparent reaction rate in comparison to commercial Pd/C, thus offering a facile confined growth method to generate superior catalysts.

View Article and Find Full Text PDF

Integrating nanoscale active materials on conductive holey reduced graphene oxide (RGO) framework is an effective strategy to synthesize composite electrode materials for advanced lithium-ion batteries. Herein, a composite of γ-FeO nanoparticles stabilized by the engineered holes on RGO was successfully synthesized by using a facile in-situ etching route, which exhibited high lithium storage performance. The fundamental insight of its enhancement mechanism was discussed.

View Article and Find Full Text PDF

A novel and simple approach to preparing hierarchical zinc oxide/reduced graphene oxide (ZnO/RGO@RGO) composite is demonstrated using few-layered graphene oxide (GO) and metal zinc as starting materials following combined processes, including in-situ metal zinc reduction and catalyzed GO deoxygenation. Metal zinc can directly reduce GO sheets in aqueous GO suspension at room temperature to obtain a porous composite precursor (ZnO/RGO) with ZnO nanoparticles anchored on the RGO sheets. Then another RGO protecting layer is directly coated on the ZnO/RGO precursor to obtain the hierarchical ZnO/RGO@RGO composite.

View Article and Find Full Text PDF

Twisted PdCu nanochains are synthesized successfully via a staged thermal treatment route, offering rich twin boundaries as catalytic "active sites" and modified electronic effects. Toward formic acid oxidation, the twisted PdCu nanochains hold the highest catalytic peak current density (1108.2 mA mg) over previous reported PdCu alloy catalysts, and also much higher catalytic activity and durability comparing with Pd nanochains and commercial Pd/C.

View Article and Find Full Text PDF

Ternary metal-element alloys have been reported as efficient electrocatalysts toward various electrochemical reactions, but a unique three-dimensional (3D) Ir-alloyed ternary nanosheet-composed flower (NCF) structure has not been explored yet. Herein, an innovated 1.8 nm Ir-alloyed ultrathin ternary PdIrCu NCF structure is synthesized via one-pot solvothermal reduction without using any surfactant.

View Article and Find Full Text PDF

Unique and novel PdSn nanochain networks were successfully synthesized with an average diameter of 5 nm, rendering a modified Pd electronic structure with rich defects such as atomic corners, steps or ledges as catalytic active sites for great enhancement of charge transfer and electrode kinetics. The prepared PdSn nanochain networks held an electrochemically active surface area as high as 119.40 m g, and exhibited higher catalytic activity and stability toward formic acid oxidation compared with PdSn nanochain networks, PdSn nanochain networks, PdSn dendrites and Pd/C.

View Article and Find Full Text PDF

We assessed the role of diabetes mellitus (DM) on treatment effects in drug-susceptible initial pulmonary tuberculosis (PTB) patients. A prospective study was conducted in eight provinces of China from October 2008 to December 2010. We enrolled 1,313 confirmed drug-susceptible initial PTB patients, and all subjects received the treatment regimen (2H3R3E3Z3/4H3R3) as recommended by the national guidelines.

View Article and Find Full Text PDF

Uniform PtRuSn ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (PtRuSn-RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells.

View Article and Find Full Text PDF

An effective strategy of ultrasmall and surface-clean PdIr nanocrystals uniformly decorated on graphene was developed using ultrasnoic-assisted approach. The prepared Us-PdIr@Graphene reduces Pd loading while holds much higher catalytic activity and better stability toward formic acid oxidation than that of commercial Pd-C, offering great promise as a superior anode catalyst for direct formic acid fuel cells.

View Article and Find Full Text PDF

The objective of this prospective study of the risks of treatment failure in patients with drug-susceptible pulmonary tuberculosis (PTB) was to provide reference data to help develop a disease control strategy. Participants were recruited in eight provinces of China from October 2008 to December 2010. A total of 1447 patients with drug-susceptible PTB and older than 15 years of age were enrolled.

View Article and Find Full Text PDF

An adsorbent, γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene was synthesized by metal etching approach toward removal of methylene blue, exhibiting rapid adsorption rate, high adsorption capacity and good recyclability, thus holding a great promise for treatment of methylene blue in wastewater.

View Article and Find Full Text PDF

Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells.

View Article and Find Full Text PDF