Publications by authors named "Lian-wen Sun"

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan.

View Article and Find Full Text PDF

Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes.

View Article and Find Full Text PDF

Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized.

View Article and Find Full Text PDF

The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice ( = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC).

View Article and Find Full Text PDF

Osteocytes are extremely sensitive to mechanical loading and govern bone remodeling process. Advanced glycation end products (AGEs) have the capacity to induce osteocyte apoptosis. In order to investigate the effects of AGEs on the mechanosensitivity of osteocytes, the osteocytic-like cells (MLO-Y4) were treated with low (50 μg/ml) and high (400 μg/ml) concentrations of AGEs for 1day and exposed to 15 dyne/cm of fluid shear stress.

View Article and Find Full Text PDF

Primary cilia are responsible for sensing mechanical loading in osteocytes. However, the underlying working mechanism of cilia remains elusive. An osteocyte model is necessary to reveal the role of cilia.

View Article and Find Full Text PDF

It is hard to explain the decrease in mechanosensitivity of osteocytes under microgravity. Primary cilia are essential mechanosensor for osteocytes. The cilia become shorter under the simulated microgravity (SMG) environment.

View Article and Find Full Text PDF

Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration.

View Article and Find Full Text PDF

The spectrin is first identified as the main component of erythrocyte membrane skeleton. It is getting growing attention since being found in multiple nonerythroid cells, providing complex mechanical properties and signal interface under the cell membrane. Recent genomics studies have revealed that the spectrin is highly relevant to bone disorders.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs.

View Article and Find Full Text PDF

Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown.

View Article and Find Full Text PDF

Space flight has been shown to induce bone loss and muscle atrophy, which could initiate the degeneration of articular cartilage. Countermeasures to prevent bone loss and muscle atrophy have been explored, but few spaceflight or ground-based studies have focused on the effects on cartilage degeneration. In this study, we investigated the effects of exercise on articular cartilage deterioration in tail-suspended rats.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions.

View Article and Find Full Text PDF

Background: Physical loading leads to a deformation of bone microstructure and may influence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement, and further, on the potential of diagnosing osteoporosis using QUS method under physical loading condition.

Methods: 16 healthy young females (control group) and 45 postmenopausal women (divided into 3 groups according to the years since menopause (YSM)) were studied.

View Article and Find Full Text PDF

Depending on the experimental design, micro-CT can be used to examine bones either in vivo or ex vivo (excised fresh or formalin-fixed). In this study we investigated if differences exist in the variables measured by micro-CT between in vivo and ex vivo scans and which kind of scan is more sensitive to the changes of bone microstructure induced by simulated weightlessness. Rat tail suspension was used to simulate the weightless condition.

View Article and Find Full Text PDF

To understand the tail-suspension model to simulate weightlessness better, this study was to investigate the relationship of the amount of body weight supported by forelimbs between the tilt angles of rat in the model. Normal rat had at least two basic postures. One was standing or walking, in which the forelimbs bear 44.

View Article and Find Full Text PDF

Exposure to microgravity causes a decrease in bone mass and altered bone geometry due to the lack of weight-bearing forces on the skeleton. The mechanical properties of bone are due not only to the structure and geometry, but also to the tissue properties of the bone material itself. To study the effects of microgravity on bone tissue, the mechanical properties of tail suspension rat femurs were investigated.

View Article and Find Full Text PDF