Mater Sci Eng C Mater Biol Appl
March 2019
Cisplatin is a highly effective antitumor drug, which can kill cancer cells by crossing-linking DNA and inhibiting transcription, but this process is limited by the combination of cisplatin and many endogenous nucleophiles, such as glutathione (GSH). Thus, when cisplatin enter cells, it is potentially vulnerable to cytoplasmic inactivation by GSH. To settle this bottleneck, we designed and synthesized a probe compound (Probe 1) and fabricated pH-responsed cisplatin, Probe 1-loaded lipid-polymer hybrid NanoParticles (CPNPs) using a single-step sonication method.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
Four new complexes, [Co(dmbpy)2(dca)2]·CH3OH (1), [Ni(dmbpy)2(dca)2]·CH3OH (2), [Zn(dmbpy)2(dca)2]·(3) and [Cu(dmbpy)2(OH)2]·5H2O (4) (dca=dicyanamide), derived from 4,4'-dimethyl-2,2'-bipyridine (dmbpy) have been synthesized and characterized by elemental analysis, TGA and single-crystal X-ray diffraction. Crystal structures and Hirshfeld surfaces analysis revealed that the complexes 1-3 were mainly supported by OH⋯N, CH⋯N and π⋯π intermolecular interactions, and for complex 4, the uncoordinated water molecules play a key role in the construction of the 3D stacking motif. UV spectrum measurements demonstrate that all of the complexes show typical metal to ligand charge transfer (MLCT) absorption bands between 301 and 306nm.
View Article and Find Full Text PDF