Publications by authors named "Lian-Fang Tian"

Breast cancer detection largely relies on imaging characteristics and the ability of clinicians to easily and quickly identify potential lesions. Magnetic resonance imaging (MRI) of breast tumors has recently shown great promise for enabling the automatic identification of breast tumors. Nevertheless, state-of-the-art MRI-based algorithms utilizing deep learning techniques are still limited in their ability to accurately separate tumor and healthy tissue.

View Article and Find Full Text PDF

Background: Pulmonary nodules in computerized tomography (CT) images are potential manifestations of lung cancer. Segmentation of potential nodule objects is the first necessary and crucial step in computer-aided detection system of pulmonary nodules. The segmentation of various types of nodules, especially for ground-glass opacity (GGO) nodules and juxta-vascular nodules, present various challenges.

View Article and Find Full Text PDF

Vessel tree skeleton extraction is widely applied in vascular structure segmentation, however, conventional approaches often suffer from the adjacent interferences and poor topological adaptability. To avoid these problems, a robust, topology adaptive tree-like structure skeleton extraction framework is proposed in this paper. Specifically, to avoid the adjacent interferences, a local message passing procedure called Gaussian affinity voting (GAV) is proposed to realize adaptive scale-growing of vessel voxels.

View Article and Find Full Text PDF

Pulmonary nodules are potential manifestation of lung cancer. Accurate segmentation of juxta-vascular nodules and ground glass opacity (GGO) nodules is an important and active area of research in medical image processing. At present, the classical active contour models (ACM) for segmentation of pulmonary nodules may cause the problem of boundary leakage.

View Article and Find Full Text PDF

First, the necessity of automatically segmenting myocardium from myocardial SPECT image is discussed in Section 1. To eliminate the influence of the background, the optimal threshold segmentation method modified for the MRS algorithm is explained in Section 2. Then, the image erosion structure is applied to identify the myocardium region and the liver region.

View Article and Find Full Text PDF