Publications by authors named "Lian Xijun"

Alum, an essential additive in sweet potato vermicelli (SPV) production, is harmful to health. To eliminate the harm to the human body caused by alum in sweet potato vermicelli, and considering the different viscous properties of gliadin fractions, an experiment was performed to replace alum with gliadin fractions to enhance the boiling resistance of SPV in this study. The results showed that the longest boiling-resistant time of fresh SPV extended to 34.

View Article and Find Full Text PDF

Hardness constitutes one of the primary performance indices of bread. However, there is scarce literature regarding the study of the mechanisms of increased hardness in different breads. In this paper, the hardness and retrogradation rates of five popular brands of bread (DaliGarden, Mankattan, MianLunSi, TOLY, and ZhengMao) in China during storage at room temperature were determined, and the mechanism of increased hardness was revealed by the results in terms of Fourier transform infrared spectroscopy (FTIR), disulfide bonds, C solid-state nuclear magnetic resonance (NMR), X-ray diffraction, and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

This study evaluated the effects of four highland barley proteins (HBPs), namely, albumin, globulin, gliadin and glutenin, on the short-term retrogradation of highland barley starch (HBS). The findings reveal that HBPs could reduce the viscosity, storage modulus and hardness of HBS, with albumin and globulin showing more prominent effects. Furthermore, with the addition of HBPs, the loss tangent (tan δ) of HBS loss increased from 0.

View Article and Find Full Text PDF
Article Synopsis
  • The retrogradation of wheat amylopectin during cold storage leads to increased hardness in flour products like bread and pastries.
  • Mixing wheat amylopectin with 20% alkali-soluble glutenin (ASG) significantly reduces retrogradation by 73.8%, demonstrating its effectiveness in maintaining texture.
  • The interaction between amylopectin and ASG causes structural changes, forming spheres with disulfide bonds, which may help improve the quality of baked goods by preventing staling.
View Article and Find Full Text PDF

Three glutenins (glutenin 1, glutenin 2, and glutenin 2) were extracted in acidic, neutral and alkaline urea solutions respectively. All of the three glutenins are rich in glutamic acid (Glu, >30 %) and proline (Pro, >20 %). Glutenin 1, extracted at pH 5, shows higher contents of hydrophilic amino acids as serine (Ser, 5.

View Article and Find Full Text PDF

Wheat, maize, cassava, mung bean and sweet potato starches have often been added to dough systems to improve their hardness. However, inconsistent effects of these starches on the dough quality have been reported, especially in refrigerated dough. The disulfide bond contents of alkali-soluble glutenin (ASG) have direct effects on the hardness of dough.

View Article and Find Full Text PDF

Phycocyanin is a blue fluorescent protein with multi-bioactive functions. However, the multi-bioactivities and spectral stability of phycocyanin are susceptible to external environmental conditions, which limit its wide application. Here, the structure, properties, and biological activity of phycocyanin were discussed.

View Article and Find Full Text PDF

Long-term retrogradation of amylopectin always leads to the quality deterioration of starch-based food. In this paper, the purified maize amylopectin was co-crystallized with NaCl to obtain anti-retrograded amylopectin. The results showed that the retrogradation rate of maize amylopectin dropped directly from 27.

View Article and Find Full Text PDF

Two alcohol soluble glutenins (ASGLUs) were extracted from gluten and further separated by column chromatography. The ASGLUs with Mw lower than 20,000 (ASGLU 1) and Mw higher than 70,000 (ASGLU 2) show the total amino acid contents of 86.71 g/100 g and 62.

View Article and Find Full Text PDF

The retrogradation of rice in shelf life is the biggest barrier to the industrial production of traditional foods using rice as material. Many rice breeders have tried their best to screen low-retrogradation rice cultivars without a specific indicator. To identify the main retrogradation-related properties of rice, the starch, amylose, and amylopectin from 16 rice cultivars were extracted from rice powder and their physicochemical properties, such as visible absorbance, infrared, average molecule weight (amylopectin), chain-length distribution (amylopectin), X-ray diffraction, and differential scanning calorimetry, were determined.

View Article and Find Full Text PDF

Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins.

View Article and Find Full Text PDF

Red pigments extracted from fungus Monascus are used for food coloration in China. Wild-growing Monascus spores are usually enriched in the yeast and mold media in the air, but those media are also favorable for yeast and bacteria. In the paper, Monascus species have grown in retrograded maize starch lain in air outdoors in winter, molds, yeast or bacteria colonies have been absent.

View Article and Find Full Text PDF

IR, (13)C NMR, X-ray diffraction and DSC applied to study the physicochemical properties of starches from six different cultivars of Jinhai (I-VI) sweet potato strains in China. Jinhai II showed the highest rate of retrogradation while Jinhai III showed the lowest in all studied cultivars. The hydrolysis rates of those starches by α-amylase were from 98.

View Article and Find Full Text PDF

The experiment was conducted to study the retrogradation properties of glutinous rice and buckwheat starch with wavelengths of maximum absorbance, FT-IR, (13)C NMR, and DSC. The results show that the starches in retrograded glutinous rice starch and glutinous rice amylopectin could not form double helix. The IR results show that protein inhabits in glutinous rice and maize starches in a different way and appearance of C-H symmetric stretching vibration at 2852 cm(-1) in starch might be appearance of protein.

View Article and Find Full Text PDF

In this paper, retrograded potato starches treated by oxalic, hydrochloric and citric acids and/with amylase respectively, as seed crystals, are added into maize starch paste to increase maize starch retrogradation rate. The results show that addition of seed accelerates maize starch retrogradation greatly. Seed prepared from retrograded potato starch treated by oxalic acid increases maize starch retrogradation rate most, from 1.

View Article and Find Full Text PDF

Starch retrogradation is the main cause of quality deterioration of starch-containing foods during storage. The purpose of this study is to find out whether certain soy protein polypeptide in hydrolysates will retard maize starch retrogradation. The results show that all soy protein hydrolysates retard maize starch retrogradation to a certain extent.

View Article and Find Full Text PDF

Retrograded starch is a crystal formed by starch molecules with hydrogen bonds. Many literatures have reported its physicochemical character, but its crystal structure is so far unclear. As we isolate amylose and amylopectin from retrograded maize, sweet potato and potato starches in 4.

View Article and Find Full Text PDF

There are two competing concepts about organization of starch granule, fibrillar concept (or amylopectin clustering concept) and blocklet concept. A new micrograph of gelatinized sweet potato starch mixed with lactose might combine the two concepts and recover the mysterious structure of starch granule. Here we propose a possible granule structure of sweet potato starch by analyzing its gelatinization micrographs mixed with different carbohydrates.

View Article and Find Full Text PDF

"Retrogradation" has been used to describe the changes that occur in starch after gelatinization, from an initially amorphous state to a more ordered or crystalline state, which has a significant impact on starch application in food, textiles and materials fields. But mechanism of starch retrogradation is still unclear until now and there is no breakthrough in this area. Here we are speculating a possible structure of retrograded maize starch by UV (binding with iodine) and IR spectra of it and its compositions.

View Article and Find Full Text PDF

The effects of electrolysis at room temperature on formation of sweet potato retrograded starch were studied by photographic method in the paper. The optimal parameters of electrolytic preparation of sweet potato retrograded starch were determined. The ratio between sweet potato starch and water was 10 g/100 mL with addition of NaCl 1.

View Article and Find Full Text PDF

Although the subject of starch retrogradation has been studied for about 20 years, the mechanism of starch retrogradation seems not yet to be completely established. In this paper, the possible retrogradation mechanism of sweet potato starch was postulated from four optical micrographs at the stages of melting of the starch granules, autoclaving treatment and aging. The possible process of retrogradation consists of three stages.

View Article and Find Full Text PDF