Objectives: Treatment of osteochondral defects is hindered by several challenges, including the failure of traditional scaffolds with a predefined cylindrical or cuboid shape to comprehensively match the natural osteochondral tissue. Herein, we employed reverse modeling and three-dimensional (3D) printing technologies to prepare subchondral bone and cartilage.
Methods: The osteochondral scaffold was prepared by bonding the subchondral bone and cartilage layers, and the curvature distribution and biomechanical behavior were compared with those of the native tissue.
Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.
View Article and Find Full Text PDFPurpose: To investigate the application value of the neutrophil to lymphocyte count ratio (NLR) in the prognostic analysis of intrahepatic cholangiocarcinoma (ICC) after radical resection, and to offer guidance for the individualized perioperative diagnosis and treatment of ICC.
Methods: The clinical data of 360 patients diagnosed with ICC following radical surgery were retrospectively analyzed. The cut-off value of NLR was calculated using the minimum -value method, and then divided into High-NLR (H-NLR) group and Low-NLR (L-NLR) group according to the NLR cut-off value.
Bioaerosols in public transportation systems raise critical environmental concerns, seriously threatening passenger health and safety. In this study, we investigate the spread characteristics of bioaerosols in a standard type-B subway compartment using both air sampling and sediment sampling methods. Additionally, without compromising indoor passenger comfort, two self-designed air purification devices, based on intense field dielectric (IFD) and dielectric barrier discharge (DBD) technologies, respectively, are successfully applied for the improvement of the subway air quality.
View Article and Find Full Text PDFGastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery system for antacids and therapeutics in response to low pH in the stomach holds promise for smart and personalized treatment of stomach diseases.
View Article and Find Full Text PDFMotivation: In the field of drug discovery, accurately and effectively predicting the binding affinity between proteins and ligands is crucial for drug screening and optimization. However, current research primarily utilizes representations based on sequence or structure to predict protein-ligand binding affinity, with relatively less study on protein surface information, which is crucial for protein-ligand interactions. Moreover, when dealing with multimodal information of proteins, traditional approaches typically concatenate features from different modalities in a straightforward manner without considering the heterogeneity among them, which results in an inability to effectively exploit the complementary between modalities.
View Article and Find Full Text PDFMotivation: Molecular representation learning plays an indispensable role in crucial tasks such as property prediction and drug design. Despite the notable achievements of molecular pre-training models, current methods often fail to capture both the structural and feature semantics of molecular graphs. Moreover, while graph contrastive learning has unveiled new prospects, existing augmentation techniques often struggle to retain their core semantics.
View Article and Find Full Text PDFDielectric environment engineering is an efficient and general approach to manipulating polaritons. Liquids serving as the surrounding media of polaritons have been used to shift polariton dispersions and tailor polariton wavefronts. However, those liquid-based methods have so far been limited to their static states, not fully unleashing the promise offered by the mobility of liquids.
View Article and Find Full Text PDFThe β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for aberrantly active Wnt/β-catenin signaling which actively participates in initiating and progressing of many cancers. Herein, we discovered novel 8-substituted quercetin derivatives with potential inhibitory activities targeting β-catenin/BCL9 PPI. Among all the derivatives, compound B4 displayed the most promising PPI inhibitory activity with an IC value of 2.
View Article and Find Full Text PDFInspired by the concept of superscattering in optics, we for the first time theoretically predict and experimentally demonstrate the superscattering phenomenon in water waves. The subwavelength superscatterer is constructed by multi-layered concentric cylinders with an inhomogeneous depth profile. The superscatterer breaks the long-held single-channel scattering limit by several times and thus significantly enhances the total scattering strength.
View Article and Find Full Text PDFThe fused deposition modeling (FDM) technique has enormous potential for developing customized medical products with complicated structures. In this study, the application of the FDM technique to three medical products was investigated, and the risk factors affecting product quality were evaluated. For FDM-printed matrix and reservoir preparations, special attention should be paid to spacing width reduction and layered coating thickness.
View Article and Find Full Text PDFSurface plasmon polaritons (SPPs) and their counterparts at low frequency (i.e., spoof SPPs) have been attracting a lot of attention recently due to their potential application for routing information with high speeds and bandwidth.
View Article and Find Full Text PDFThe β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we first described quercetin and its derivatives had potential inhibitory effects on β-catenin/BCL9 PPI. The most potent compound, quercetin-3'-O-(4-methylpiperazine-1-yl) propyl (C1), directly binded with β-catenin and disrupted the β-catenin/BCL9 interaction in both the protein level and the cellular context.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
Terahertz (THz) meta-devices are considered to be a promising framework for constructing integrated photonic circuitry, which is significant for processing the upsurge of data brought about by next-generation telecommunications. However, present active metasurfaces are typically restricted by a single external driving field, a single modulated frequency, fixed switching speed, and deficiency in logical operation functions which prevents devices from further practical applications. Here, to overcome these limitations, we propose a hybrid THz metasurface consisting of vanadium dioxide (VO) and germanium (Ge) that enables electrical and optical tuning methods individually or simultaneously and theoretically investigate its performance.
View Article and Find Full Text PDFIn this paper, a novel broadband circularly polarized transmitarray antenna (CPTA) enabled by axial-ratio-improved receiver-transmitter metasurface loaded with parasitic patches is proposed. Split-ring-shaped parasitic patch is utilized to generate an additional resonant mode and significantly broaden the 3-dB axial ratio (AR) bandwidth of proposed receiver/transmitter patches from 6.64% to 15.
View Article and Find Full Text PDFStealth radome (SR), especially with an ultra-broad and nearly transparent window between two absorption bands, plays a crucial role in stealth techniques, antenna radomes, and so on. However, current devices have the defects of narrow transmission bands, high insertion loss, and wide transition bands between the transmission and absorption bands, which are unfavorable for the stealth of broadband radar and communication systems. In this paper, a novel SR with an ultra-broad and high-efficiency inter-absorption band transparent window is proposed by combining broadband resonance lumped circuits with a multi-layer cascaded frequency-selective surface (FSS).
View Article and Find Full Text PDFMore than 40% of patients with late-stage colorectal cancer (CRC) develop liver metastasis (LM). Which immune cells play important roles in CRC-LM and contribute to the difference between left-sided CRC (LCC) and right-sided CRC (RCC) remain unclear. By single-cell RNA sequencing (scRNA-seq), we not only find that activated B cells are significantly depleted in CRC with LM, but also find a subtype of B cells developed from activated B cells, namely immature plasma cell population alpha (iMPA), highly correlated with metastasis.
View Article and Find Full Text PDFInvisibility has been a topic of long-standing interest owing to the advent of metamaterials and transformation optics, but still faces open challenges after its tremendous development in recent decades. One of the big challenges is the narrow bandwidth, as the realization of an invisibility cloak is usually based on a metamaterial-an artificial composite material composed of subwavelength resonator structures that are always associated with dispersion. Different from previous works that have tried to eliminate the material dispersion to enhance the bandwidth of an invisibility cloak, here, it is found that by judiciously harnessing the material dispersion, the bandwidth of the cloak can still be significantly increased.
View Article and Find Full Text PDFUnderwater acoustic metasurfaces have broad application prospects for the stealth of underwater objects. However, problems such as a narrow operating frequency band, poor operating performance, and considerable thickness at low frequencies remain. In this study a reverse design method for ultra-thin underwater acoustic metasurfaces for low-frequency broadband is proposed using a tandem fully connected deep neural network.
View Article and Find Full Text PDF