Aims/introduction: To investigate the related risk factors of retinopathy in young and middle-aged diabetic patients in order to improve the prognosis of patients.
Materials And Methods: Using clinical practice data from a cohort study at our two research centers, we developed a bivariate logistic regression model to investigate the frightening risk factors potentially for retinopathy in young and middle-aged patients with diabetes, including diabetes type, physical activity level, treatment-related characteristics and laboratory tests.
Results: A total of 453 patients with diabetes were investigated, 197 (43.
Background: The causal relationships between amyotrophic lateral sclerosis (ALS), Parkinson disease and different intensities of physical activity (PA) are still inconclusive. To evaluate the causal impact of PA on ALS and Parkinson disease (PD), this study integrates evidence from Mendelian randomization (MR) using a meta-analysis approach.
Methods: MR analyses on genetically predicted levels of PA (compose of self-reported moderate-to-vigorous physical activity [MVPA], self-reported vigorous physical activity [VPA], and strenuous sports or other exercises [SSOE]) regarding ALS and PD published up to July 27, 2024, were obtained from PubMed, Scopus, Web of Science, and Embase.
Background: The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium.
View Article and Find Full Text PDFBackground: Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities.
Results: In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid.
Granulocyte colony-stimulating factor (G-CSF), a pleiotropic cytokine, is secreted by the reproductive tract. Furthermore, our previous study indicated that human recombinant G-CSF (hrG-CSF) supplementation during porcine oocyte in vitro maturation (IVM) or during embryo in vitro culture (IVC) improved their quality and development potential when using cumulus-oocyte complexes (COCs) with more than three cumulus cell layers (CCL >3). Thus, in this study, we investigate the optimal conditions of hrG-CSF supplementation throughout the in vitro production (IVP: IVM + IVC) system to improve the embryo production efficiency of "poor-quality (CCL ≤3)" oocytes.
View Article and Find Full Text PDFTetraploid complementation is an ideal method for demonstrating the differentiation potential of pluripotent stem cells. In this study, we selected the most efficient tetraploid production method for porcine embryos and investigated whether tetraploid blastomere aggregation could enhance the quality of tetraploid embryos. Three methods were investigated to produce tetraploid embryos: First, tetraploid embryos were produced using electro-fusion of two-cell stage parthenogenetic blastomere (FUTP).
View Article and Find Full Text PDFStem cell factor (SCF), a cytokine growth factor, is expressed in various tissues of the male and female reproductive organs, including the testis, ovary, and endometrium. Its primary function involves cell survival, differentiation, and proliferation, achieved through its binding to the c-kit receptor. This study aimed to scrutinize the effects of SCF treatment during culture (IVC) on both the developmental potential and the efficiency of establishing embryonic stem cells (ESCs) from fertilized and cloned porcine embryos.
View Article and Find Full Text PDFgeneration of porcine embryos is an indispensable method in the realms of both agriculture and biomedicine. Nonetheless, the extant procedures encounter substantial obstacles pertaining to both the caliber and efficacy of the produced embryos, necessitating extensive research to maturation (IVM), the seminal commencement phase. One potentially fruitful approach may lie in refining the media and supplements composition utilized for oocyte maturation.
View Article and Find Full Text PDFIntroduction: Liquid preservation of boar semen is a highly preferred method for semen preservation in pig production. However, oxidative stress is the main challenge during the liquid preservation of boar semen in a time dependent manner. Therefore, supplementation of sperm with antioxidants during storage to protect them from oxidative stress has been the focus of recent research.
View Article and Find Full Text PDFNeurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos.
View Article and Find Full Text PDFBackground: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine.
Objectives: This study examined the effects of EGT supplementation during the maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after fertilization (IVF).
Methods: Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM.
Porcine embryos are used for a variety of applications. However, the maturation rate remains low, and novel maturation (IVM) techniques that facilitate the collection of mature oocytes are necessary. C-C motif chemokine ligand 2 (CCL2) is a key periovulatory chemokine present in cumulus-oocyte complexes (COCs).
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
Based on the panel data of 281 prefecture-level cities in China, from 2007 to 2017, we empirically explore the co-benefits of the carbon emissions trading scheme. We found that the carbon emissions trading scheme effectively achieved the coordinated control of carbon dioxide and air pollutants, by improving the green production level of the pilot areas, reducing the regional industrial output, and promoting the upgrading of the industrial structure. In terms of heterogeneity, the emissions trading scheme shows obvious urban location and level heterogeneity, in terms of coordinated control.
View Article and Find Full Text PDFInterleukin-7 (IL-7), a vital factor that affects cell development, proliferation, and survival, plays an important role in oocyte maturation. However, its role in embryonic development remains unknown. Therefore, in this study, we aimed to investigate the effects of IL-7 supplementation on culture (IVC) of porcine embryos after parthenogenetic activation (PA) based on characteristics such as cleavage, blastocyst formation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in cleaved embryos, total cell number, apoptosis rate, and cell lineage specification in blastocysts.
View Article and Find Full Text PDFAggregation of blastomeres is a promising method to improve the developmental competence of blastocysts and may be useful for the production of chimeric animals and the establishment of embryonic stem cell lines by increasing inner cell masses. Here, we determined the optimal conditions for blastomere aggregation using phytohemagglutinin-L (PHA-L) and examined PHA-L efficiency by comparing it with Well of the Well (WOW), a general blastomere aggregation method. As a result, we confirmed that treatment with 15 μg/ml PHA-L for 144 h was effective for blastomere aggregation and embryonic development of three zona-free 2-cell stage embryos (TZ2Es) after parthenogenetic activation (PA).
View Article and Find Full Text PDFFront Cell Dev Biol
September 2022
The trace element Cu is required for the activity of various enzymes essential for physiological processes. In this study, we elucidated the copper transport system in porcine follicular cells and investigated the effect of Cu chelation during maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA). Cu chelation was induced by adding tetraethylenepentamine (TEPA) to the maturation media (TCM199-PVA).
View Article and Find Full Text PDFExposure to neurodevelopmental toxicants can cause permanent brain injury. Hance, determining the neurotoxicity of unknown substances is essential for the safety of substance. As an alternative method to animal studies, developmental neurotoxicity test (DNT) and the first discriminant function (DF) were established in previous study.
View Article and Find Full Text PDFAutophagy, an intracellular recycling system, is essential for the meiotic maturation of porcine oocytes. Trehalose has been reported as a novel mammalian target of rapamycin (mTOR)-independent autophagy inducer in many cells. Furthermore, we previously have demonstrated that trehalose supplementation during in vitro maturation of porcine oocytes improves the developmental competence of parthenogenetic embryos, possibly via autophagic activation, whereas the underlying mechanisms remain unclear.
View Article and Find Full Text PDFNeurotrophin-4 (NT-4) is a neurotrophic factor that plays an important role in follicular development and oocyte maturation. However, it is not yet known whether NT-4 is related to oocyte maturation and follicular development in pigs. This study aims to investigate the effects of NT-4 supplementation during maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA).
View Article and Find Full Text PDFStem cell factor (SCF), also known as c-Kit ligand, plays an important role in the proliferation of primordial germ cells and the survival of oocytes during follicular development. The aim of this study was to investigate the effect of SCF/c-Kit signaling on maturation (IVM) of porcine oocytes by analyzing nuclear and cytoplasmic maturation, oocyte size, cumulus cell expansion, and developmental competence to the blastocyst stage. Moreover, mRNA expression patterns of porcine cumulus cells and oocytes were evaluated using qRT-PCR.
View Article and Find Full Text PDFThe embryonic stage, site of embryo transfer in the reproductive tract of the surrogate, and embryo transfer method are important for the successful production of offspring. In the present study, there was comparison of pregnancy rates in camels following the surgical transfer of early-developmental stage embryos at Day 2 and transvaginal transfer of blastocysts at Day 7. Embryos were produced by somatic cell nuclear transfer using in vivo-matured oocytes and ear fibroblasts as donor cells.
View Article and Find Full Text PDFObjective: The present study evaluated the efficiency of embryo development and pregnancy of somatic cell nuclear transfer (SCNT) embryos using different source-matured oocytes in Camelus dromedarius.
Methods: Camelus dromedarius embryos were produced by SCNT using in vivo- and in vitro- matured oocytes. In vitro embryo developmental capacity of reconstructed embryos was evaluated.