Sediment transport, turbidity, and dissolved oxygen were evaluated during six consecutive water years (2013-2018) of drawdowns of a flood control reservoir in the upper Willamette Valley, Oregon, USA. The drawdowns were conducted to allow volitional passage of endangered juvenile chinook salmon through the dam's regulating outlets by lowering the reservoir elevation to a point where the historical streambed was exposed and transported water and sediment through the reservoir dam. Sediment loads during the drawdown were highest in the first year of monitoring, with a computed value of 40,200 metric tons over a 5-day drawdown, followed by 5 years of lower sediment loads and lower sediment transport rates, suggesting that much of the stored sediment within the reservoir thalweg was transported out of the reservoir in the early years of the consecutive drawdowns.
View Article and Find Full Text PDFAnthropogenic eutrophication contributes to harmful blooms of cyanobacteria in freshwater ecosystems worldwide. In Upper Klamath Lake, Oregon, massive blooms of Aphanizomenon flos-aquae and smaller blooms of other cyanobacteria are associated with cyanotoxins, hypoxia, high pH, high concentrations of ammonia, and potentially hypercapnia. Recovery of the endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris in Upper Klamath Lake is obstructed by low survival in the juvenile life stage.
View Article and Find Full Text PDFAnnual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition.
View Article and Find Full Text PDF