HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved.
View Article and Find Full Text PDFRNA-protein interactions govern many viral and host cell processes. Conventional 'footprinting' to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2' hydroxyl reactivity ('SHAPE') that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex.
View Article and Find Full Text PDFBackground: Egress of a number of different virus species from infected cells depends on proteins of the endosomal sorting complexes required for transport (ESCRT) pathway. HIV has also hijacked this system to bud viruses outward from the cell surface. How ESCRT-I activates ESCRT-III in this process remains unclear with conflicting published evidence for the requirement of ESCRT-II which fulfils this role in other systems.
View Article and Find Full Text PDFDefinitive secondary structural mapping of RNAs in vitro can be complicated by the presence of more than one structural conformer or multimerization of some of the molecules. Until now, probing a single structure of conformationally flexible RNA molecules has typically relied on introducing stabilizing mutations or adjusting buffer conditions or RNA concentration. Here, we present an in-gel SHAPE (selective 2'OH acylation analysed by primer extension) approach, where a mixed structural population of RNA molecules is separated by non-denaturing gel electrophoresis and the conformers are individually probed within the gel matrix.
View Article and Find Full Text PDF